首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonadhesive and water-repellent surfaces are required for many tribological applications. We study mechanisms of wetting of patterned superhydrophobic Si surfaces, including the transition between various wetting regimes during microdroplet evaporation in environmental scanning electron microscopy (ESEM) and for contact angle and contact angle hysteresis measurements. Wetting involves interactions at different scale levels: macroscale (water droplet size), microscale (surface texture size), and nanoscale (molecular size). We propose a generalized formulation of the Wenzel and Cassie equations that is consistent with the broad range of experimental data. We show that the contact angle hysteresis involves two different mechanisms and how the transition from the metastable partially wetted (Cassie) state to the homogeneously wetted (Wenzel) state depends upon droplet size and surface pattern parameters.  相似文献   

2.
A series of pillar-like patterned silicon wafers with different pillar sizes and spacing are fabricated by photolithography and further modified by a self-assembled fluorosilanated monolayer. The dynamic contact angles of water on these surfaces are carefully measured and found to be consistent with the theoretical predictions of the Cassie model and the Wenzel model. When a water drop is at the Wenzel state, its contact angle hysteresis increases along with an increase in the surface roughness. While the surface roughness is further raised beyond its transition roughness (from the Wenzel state to the Cassie state), the contact angle hysteresis (or receding contact angle) discontinuously drops (or jumps) to a lower (or higher) value. When a water drop is at the Cassie state, its contact angle hysteresis strongly depends on the solid fraction and has nothing to do with the surface roughness. Even for a superhydrophobic surface, the contact angle hysteresis may still exhibit a value as high as 41 degrees for the solid fraction of 0.563.  相似文献   

3.
Molecular dynamics simulations were used to study the wetting of nanogrooved PE and PVC polymer surfaces. The contact angles, equilibrium states, and equilibrium shapes of two nanosized water droplets were analyzed on surfaces with 1D-arranged periodic roughness of various dimensions. The composite solid-liquid contact, which is preferred in practical applications and in which a droplet rests on top of the surface asperities, was observed on the roughest PE surfaces, whereas water filled the similar but slightly deeper grooves on PVC surfaces. The transition from the wetted to composite contact regime occurred when the contact angle with a flat surface reached the value at which the apparent Wenzel and Cassie contact angles are equal. Droplets on grooved PE surfaces with the composite contact exhibited contact angles in agreement with Cassie's equation, but the increase in hydrophobicity on smoother surfaces with the wetted contact was less than expected from Wenzel's equation. The difference between the simulated and theoretical values decreased as the dimensions of the surface grooves increased. Only a slight increase or even a slight decrease in the contact angles was observed on the grooved PVC surfaces, owing to the less hydrophobic nature of the flat PVC surface. On both polymers, the nanodroplet assumed a spherical shape in the composite contact. Only minor anisotropy was observed in the wetted contact on PE surfaces, whereas even a highly anisotropic shape was seen on the grooved PVC surfaces. The contact angle in the direction of the grooves was smaller than that in the perpendicular direction, and the difference between the two angles decreased with the increasing size of the water droplet.  相似文献   

4.
The stability of wetting states, namely the Cassie state (partial wetting) and the Wenzel state (complete wetting) of surfaces with protrusions, is determined by comparing the total free energy of a liquid drop in terms of their apparent contact angles for different protrusion features. It is found that when the area fraction of the topographical features and the intrinsic contact angle for a flat surface are large, the Cassie state is favored, but it can be either the metastable or stable state. It is shown that the transition from the Cassie state to the Wenzel state requires the application of a pressure to the meniscus between the surface protrusions. The critical transition pressure increases not only with increasing area fraction and intrinsic contact angle, but also with decreasing protrusion size. During the transition, a high-pressure gas can be trapped around the protrusions that can cause the Cassie state to be recovered after the release of the applied pressure. The analysis shows that a droplet can 'hang' upside-down when the protrusion size is very small; namely, the protrusions can pin the meniscus. These results are discussed relative to the advancing and receding contact angle.  相似文献   

5.
Molecular dynamics simulations were performed to study the behavior of nanoscale water droplets at solid surfaces. Simulations of droplets on heterogeneous patterned surfaces show that the relative sizes of the domains and the droplets play an important role as do the interactions between the solid and the liquid, particularly when the domain width is comparable to the droplet radius. For pillar surfaces, a transition is observed between the Wenzel and the Cassie and Baxter regimes with increasing pillar height. The effects of pillar width and the gap between the pillars were also examined. The simulations show clearly the importance of the detailed topography and composition of the solid surface.  相似文献   

6.
We present calculations of the density distributions and contact angles of liquid droplets on roughened solid surfaces for a lattice gas model solved in a mean-field approximation. For the case of a smooth surface, this approach yields contact angles that are well described by Young's equation. We consider rough surfaces created by placing an ordered array of pillars on a surface, modeling so-called superhydrophobic surfaces, and we have made calculations for a range of pillar heights. The apparent contact angle follows two regimes as the pillar height increases. In the first regime, the liquid penetrates the interpillar volume, and the contact angle increases with pillar height before reaching a constant value. This behavior is similar to that described by the Wenzel equation for contact angles on rough surfaces, although the contact angles are underestimated. In the second regime, the liquid does not penetrate the interpillar volume substantially, and the contact angle is independent of the pillar height. This situation is similar to that envisaged in the Cassie-Baxter equation for contact angles on heterogeneous surfaces, but the contact angles are overestimated by this equation. For larger pillar heights, two states of the droplet can be observed, one Wenzel-like and the other Cassie-like.  相似文献   

7.
In this paper, we demonstrate how condensed moisture droplets wet classical superhydrophobic lotus leaf surfaces and analyze the mechanism that causes the increase of contact angle hysteresis. Superhydrophobic lotus leaves in nature show amazing self-cleaning property with high water contact angle (>150°) and low contact angle hysteresis (usually <10°), causing droplets to roll off at low inclination angles, in accordance with classical Cassie–Baxter wetting state. However, when superhydrophobic lotus leaves are wetted with condensation, the condensed water droplets are sticky and exhibit higher contact angle hysteresis (40–50°). Compared with a fully wetted sessile droplet (classical Wenzel state) on the lotus leaves, the condensed water droplet still has relatively large contact angle (>145°), suggesting that the wetting state deviates from a fully wetted Wenzel state. When the condensed water droplets are subjected to evaporation at room conditions, a thin water film is observed bridging over the micropillar structures of the lotus leaves. This causes the dew to stick to the surface. This result suggests that the condensed moisture does not uniformly wet the superhydrophobic lotus leaf surfaces. Instead, there occurs a mixed wetting state, between classical Cassie–Baxter and Wenzel states that causes a distinct increase of contact angle hysteresis. It is also observed that the mixed Cassie–Baxter/Wenzel state can be restored to the original Cassie–Baxter state by applying ultrasonic vibration which supplies energy to overcome the energy barrier for the wetting transition. In contrast, when the surface is fully wetted (classical Wenzel state), such restoration is not observed with ultrasonic vibration. The results reveal that although the superhydrophobic lotus leaves are susceptible to being wetted by condensing moisture, the configured wetting state is intermediate between the classical Cassie–Baxter and Wenzel states.  相似文献   

8.
Electrowetting (EW) has recently been demonstrated as a powerful tool for controlling droplet morphology on smooth and artificially structured surfaces. The present work involves a systematic experimental investigation of the influence of electrowetting in determining and altering the state of a static droplet resting on an artificially microstructured surface. Extensive experimentation is carried out to benchmark a previously developed energy-minimization-based model that analyzed the influence of interfacial energies, surface roughness parameters, and electric fields in determining the apparent contact angle of a droplet in the Cassie and Wenzel states under the influence of an EW voltage. The EW voltage required to trigger a transition from the Cassie state to the Wenzel state is experimentally determined for surfaces having a wide range of surface parameters (surface roughness and fraction of surface area covered with pillars). The reversibility of the Cassie-Wenzel transition upon the removal of the EW voltage is also quantified and analyzed. The experimental results from the present work form the basis for the design of surfaces that enable dynamic control of droplet morphology. A significant finding from the present work is that nonconservative dissipative forces have a significant influence in opposing fluid flow inside the microstructured surface that inhibits reversibility of the Cassie-Wenzel transition. The artificially structured surfaces considered in this work have microscale roughness feature sizes that permits direct visual observation of EW-induced Cassie-Wenzel droplet transition; this is the first reported visual confirmation of EW-induced droplet state transition.  相似文献   

9.
How to make the Cassie wetting state stable?   总被引:1,自引:0,他引:1  
Wetting of rough hydrophilic and hydrophobic surfaces is discussed. The stability of the Cassie state, with air trapped in relief details under the droplet, is necessary for the design of true superhydrophobic surfaces. The potential barrier separating the Cassie state and the Wenzel state, for which the substrate is completely wetted, is calculated for both hydrophobic and hydrophilic surfaces. When the surface is hydrophobic, the multiscaled roughness of pillars constituting the surface increases the potential barrier separating the Cassie and Wenzel states. When water fills the hydrophilic pore, the energy gain due to the wetting of the pore hydrophilic wall is overcompensated by the energy increase because of the growth of the high-energetic liquid-air interface. The potential barrier separating the Cassie and Wenzel states is calculated for various topographies of surfaces. Structural features of reliefs favoring enhanced hydrophobicity are elucidated.  相似文献   

10.
On rough surfaces, two distinct wetting modes can appear. These two states are usually described by the theories of Cassie (drops suspended on top of roughness features) and Wenzel (drops impaled on roughness features). Whereas the wetting transition from the Cassie to the Wenzel state has been relatively well studied both experimentally and theoretically, the question of whether metastable Wenzel drops exist and how they transition to the Cassie state has remained open. In this work, we study the wetting behavior of microstructured post surfaces coated with a hydrophobic fluoropolymer. Through condensation, the formation of metastable Wenzel droplets is induced. We show that under certain conditions drops can transition from the Wenzel to the Cassie state.  相似文献   

11.
We demonstrate that wettability of poly(ethylene glycol) (PEG) surfaces can be controlled using nanostructures with various geometrical features. Capillary lithography was used to fabricate PEG nanostructures using a new ultraviolet (UV) curable mold consisting of functionalized polyurethane with acrylate group (MINS101m, Minuta Tech.). Two distinct wetting states were observed depending of the height of nanostructures. At relatively lower heights (< 300 nm for 150 nm pillars with 500 nm spacing), the initial contact angle of water was less than 80 degrees and the water droplet easily invaded into the surface grooves, leading to a reduced contact angle at equilibrium (Wenzel state). At relatively higher heights (> 400 nm for 150 nm pillars with 500 nm spacing), on the other hand, the nanostructured PEG surface showed hydrophobic nature and no significant change in contact angle was observed with time (Cassie state). The presence of two wetting states was also confirmed by dynamic wetting properties and contact-angle hysteresis. The wetting transition from hydrophilic (bare PEG surface) to hydrophobic (PEG nanostructures) was described by the Cassie-Baxter equation assuming that enhanced hydrophobicity is due to the heterogeneous wetting mediated by an air pocket on the surface. The measured contact angles in the Cassie state were increased with increasing air fraction, in agreement with the theoretical prediction.  相似文献   

12.
Transition between superhydrophobic states on rough surfaces   总被引:11,自引:0,他引:11  
Surface roughness is known to amplify hydrophobicity. It is observed that, in general, two drop shapes are possible on a given rough surface. These two cases correspond to the Wenzel (liquid wets the grooves of the rough surface) and Cassie (the drop sits on top of the peaks of the rough surface) formulas. Depending on the geometric parameters of the substrate, one of these two cases has lower energy. It is not guaranteed, though, that a drop will always exist in the lower energy state; rather, the state in which a drop will settle depends typically on how the drop is formed. In this paper, we investigate the transition of a drop from one state to another. In particular, we are interested in the transition of a "Cassie drop" to a "Wenzel drop", since it has implications on the design of superhydrophobic rough surfaces. We propose a methodology, based on energy balance, to determine whether a transition from the Cassie to Wenzel case is possible.  相似文献   

13.
Condensation on rough or superhydrophobic substrates can induce wetting behavior that is quite different from that of deposited or impinging drops. We investigate the growth dynamics of water drops in a well-controlled condensation chamber on a model rough hydrophobic surface made of square pillars. After having followed growth laws similar to those observed on flat surfaces, a transition to an air-pocket-like state occurred because of the bridging of the drops between the pillars. Another transition to the more stable Wenzel state is later ensured by a noticeable pillar self-drying process. Condensation ends up in a few large drops in a mixed Wenzel penetration regime. The drops are fed by neighboring channels and the adjacent pillars stay almost dry, a remarkable and seemingly general property of rough hydrophobic substrates.  相似文献   

14.
超疏水表面微纳二级结构对冷凝液滴最终状态的影响   总被引:1,自引:0,他引:1  
从超疏水表面(SHS)上初始冷凝液核长大、合并、形成初始液斑开始,分析计算了冷凝液斑变形成为Wenzel或Cassie液滴过程中界面能量的变化,并以界面能曲线降低、是否取最小值为判据,确定冷凝液滴的最终稳定状态.计算结果表明:在只有微米尺度的粗糙结构表面上,冷凝液滴的界面能曲线一般都是先降低再升高,呈现Wenzel状态;而当表面具有微纳米二级粗糙结构,且纳米结构的表面空气面积分率较高时,冷凝液滴的能量曲线持续降低,直至界面能最小的Cassie状态,因此可以自发地形成Cassie液滴.还计算了文献中具有不同结构参数的SHS上冷凝液滴的状态和接触角,并与实验结果进行了比较,结果表明,计算的冷凝液滴状态与实验观察结果完全吻合.因此,微纳二级结构是保持冷凝液滴在SHS上呈现Cassie状态的重要因素.  相似文献   

15.
Dynamic effects of bouncing water droplets on superhydrophobic surfaces   总被引:1,自引:0,他引:1  
Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water repellent properties. Superhydrophobic surfaces may be generated by the use of hydrophobic coating, roughness, and air pockets between solid and liquid. Dynamic effects, such as the bouncing of a droplet, can destroy the composite solid-air-liquid interface. The relationship between the impact velocity of a droplet and the geometric parameters affects the transition from the solid-air-liquid interface to the solid-liquid interface. Therefore, it is necessary to study the dynamic effect of droplets under various impact velocities. We studied the dynamic impact behavior of water droplets on micropatterned silicon surfaces with pillars of two different diameters and heights and with varying pitch values. A criterion for the transition from the Cassie and Baxter regime to the Wenzel regime based on the relationship between the impact velocity and the parameter of patterned surfaces is proposed. The trends are explained based on the experimental data and the proposed transition criterion. For comparison, the dynamic impact behavior of water droplets on nanopatterned surfaces was investigated. The wetting behavior under various impact velocities on multiwalled nanotube arrays also was investigated. The physics of wetting phenomena for bouncing water droplet studies here is of fundamental importance in the geometrical design of superhydrophobic surfaces.  相似文献   

16.
The present work aims to contribute to the understanding at a molecular level of the origin of the hydrophobic nature of surfaces exhibiting roughness at the nanometer scale. Graphite-based smooth and model surfaces whose roughness dimension stretches from a few angstroms to a few nanometers were used in order to generate Cassie and Wenzel wetting states of water. The corresponding solid-liquid surface free energies were computed by means of molecular dynamics simulations. The solid-liquid surface free energy of water-smooth graphite was found to be -12.7 ± 3.3 mJ/m(2), which is in reasonable agreement with a value estimated from experiments and fully consistent with the features of the employed model. All the rugged surfaces yielded higher surface free energy. In both Cassie and Wenzel states, the maximum variation of the surface free energy with respect to the smooth surface was observed to represent up to 50% of the water model surface tension. The solid-liquid surface free energy of Cassie states could be well predicted from the Cassie-Baxter equation where the surface free energies replace contact angles. The origin of the hydrophobic nature of surfaces yielding Cassie states was therefore found to be the reduction of the number of interactions between water and the solid surface where atomic defects were implemented. Wenzel's theory was found to fail to predict even qualitatively the variation of the solid-liquid surface free energy with respect to the roughness pattern. While graphite was found to be slightly hydrophilic, Wenzel states were found to be dominated by an unfavorable effect that overcame the favorable enthalpic effect induced by the implementation of roughness. From the quantitative point of view, the solid-liquid surface free energy of Wenzel states was found to vary linearly with the roughness contour length.  相似文献   

17.
以砂纸为模板制作聚合物超疏水表面   总被引:7,自引:2,他引:5  
报道了一种聚合物材料超疏水表面的简便制备方法. 以不同型号的金相砂纸为模板, 通过浇注成型或热压成型技术, 在聚合物表面形成不同粗糙度的结构. 接触角实验结果证明, 聚合物表面与水的接触角随着所用砂纸模板粗糙度的增加而加大, 其中粒度号为W7和W5砂纸制作的表面与水的接触角可超过150°, 显示出超疏水性质. 多种聚合物使用砂纸为模均可制备不同粗糙度及超疏水的表面, 本征接触角对复制表面浸润性的影响从Wenzel态到Cassie态而变小. 扫描电镜结果表明, 不规则形状的砂纸磨料颗粒构成了超疏水所需要的微纳米结构的模板.  相似文献   

18.
Superhydrophobic surfaces in Wenzel and metastable wetting state were prepared and the conversion of such surfaces to ultraphobic surfaces was reported by the application of a fine-scale roughness. Silicon nitride substrates with hexagonally arranged pillars were prepared by micromachining. The two-scale roughness was achieved by coating these substrates with 60 nm silica nanoparticles. The surface was made hydrophobic by silanization with octadecytrichlorosilane (OTS). Wettability studies of the silicon nitride flat surface, silicon nitride pillars, and the surfaces with two-scale roughness showed that a two-scale roughness can effectively improve the hydrophobicity of surfaces with a higher apparent contact angle and reduced contact angle hysteresis when the original rough surface was in a metastable or Wenzel state. This study shows the pathway of converting a metastable hydrophobic surface to an ultraphobic surface by the introduction of a fine-scale roughness, which adds to the literature a new aspect of fine-scale roughness effect.  相似文献   

19.
Despite the practical need, no models exist to predict contact angles or wetting mode of surfactant solutions on rough hydrophobic or superhydrophobic surfaces. Using Gibbs' adsorption equation and a literature isotherm, a new model is constructed based on the Wenzel and Cassie equations. Experimental data for aqueous solutions of sodium dodecyl sulfate (SDS) contact angles on smooth Teflon surfaces are fit to estimate values for the adsorption coefficients in the model. Using these coefficients, model predictions for contact angles as a function of topological f (Cassie) and r (Wenzel) factors and SDS concentration are made for different intrinsic contact angles. The model is also used to design/tune surface responses. It is found that: (1) predictions compare favorably to data for SDS solutions on five superhydrophobic surfaces. Further, the model predictions can determine which wetting mode (Wenzel or Cassie) occurred in each experiment. The unpenetrated or partially penetrated Cassie mode was the most common, suggesting that surfactants inhibit the penetration of liquids into rough hydrophobic surfaces. (2) The Wenzel roughness factor, r, amplifies the effect of surfactant adsorption, leading to larger changes in contact angles and promoting total wetting. (3) The Cassie solid area fraction, f, attenuates the lowering of contact angles on rough surfaces. (4) The amplification/attenuation is understood to be due to increased/decreased solid-liquid contact-area.  相似文献   

20.
Molecular dynamics simulations were used to study the effect of periodic roughness of PE and PVC polymer surfaces on the hydrophobicity. Pillars of different lateral dimensions and heights were derived from flat crystalline surfaces, and the results of nanoscale simulations on the structured surfaces were compared with theoretical predictions of the Wenzel and Cassie equations. Hydrophobicity increased on all rough surfaces, but the increase was greater on the structured PE surfaces because of the larger water contact angle on the flat PE surface than the corresponding PVC surface. Equally sized pillar structures on the two polymers resulted in different equilibrium wetting geometries. Composite contacts were observed on rough PE surfaces, and the contact angle increased with decreasing contact area between the solid and the liquid. Opposite results were obtained for rough PVC surfaces; the contact angle increased with the solid-liquid contact area, in agreement with Wenzel's equation. However, the composite contact was observed if the energies of the wetted and composite contacts were almost equal. Good agreement was obtained between the simulated contact angles and equilibrium droplet shapes and the theories but there were also some limitations of the nanoscale simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号