首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The reaction of AMTT (AMTT = 4-amino-3-methyl-1,2,4-triazol-5-thione, HL1) with palladium(II) chloride and triphenylphosphane as a co-ligand in acetonitrile afforded the mononuclear PdII-complex [(PPh3)Pd(HL1)Cl]Cl·2CH3CN (1). The complex [(PPh3)Pd(HL1)I]Cl·1/2H2O (2) was prepared via halogen exchange between 1 and sodium iodide in methanol/acetonitrile. The first binuclear palladium(II) complex containing singly deprotonated HL1, [(PPh3)2ClPd(L1)Pd(PPh3)Cl]Cl·1/3H2O·CH3OH (3), was prepared by the reaction of HL1 with palladium(II) chloride and triphenylphosphane in the presence of sodium acetate in methanol.  相似文献   

2.
Reaction of copper(I) chloride with 1,3-imidazoline-2-thione (imzSH) in the presence of Ph3P in 1:2:2 or 1:1:2 (M:L:PPh3) molar ratios yielded a compound of unusual composition, [Cu2(imzSH)(PPh3)4Cl2] · CH3OH (1), whose X-ray crystallography has shown that its crystals consist of four coordinated [CuCl(1κS-imzSH)(PPh3)2] (1a), and three coordinated [Cu(PPh3)2Cl] (1b) independent molecules in the same unit cell. In contrast, crystals of complexes of copper(I) bromide/iodide are formed by single molecules of [CuBr(1κS-imzSH)(PPh3)2] · H2O (2) and [CuI(1κS-imzSH)(PPh3)2] (3), respectively, similar to molecule 1a. The related ligand, 1,3-benzimidazoline-2-thione (bzimSH) formed a complex [CuBr(1κS-bzimSH)(PPh3)2] · CH3COCH3 (4), similar to 2. The formation of 1a and 1b has been also revealed by NMR spectroscopy. The NMR spectra of 24 also showed weak signals indicating formation of compounds similar to 1b. It reveals that the lability of the Cu–S bond varies in the order: Cl ? Br ∼ I. Weak interactions {e.g. C–H?π electrons of ring, –NH?halogens/oxygen, C–H?halogens/oxygen, π?π (between rings)} have played an important role in building 2D chains of complexes 14.  相似文献   

3.
Compounds of the type [Ag(PPh3)3(HL)] {H2xspa=3(aryl)-2-sulfanylpropenoic acids: x = Clp [3-(2-chlorophenyl)-], -o-mp [3-(2-methoxyphenyl)-], -p-mp [3-(4-methoxyphenyl)-], -o-hp [3-(2-hydroxyphenyl)-], -p-hp [3-(4-hydroxyphenyl-); H2cpa = 2-cyclopentylidene-2-sulfanylacetic acid} were synthesized and characterised by IR and NMR (1H 13C and 31P) spectroscopy and by FAB mass spectrometry. The crystal structures of [Ag(PPh3)3(HClpspa)], [Ag(PPh3)3(H-o-mpspa)], [Ag(PPh3)3(H-p-mpspa)] and [Ag(PPh3)3(Hcpa)] reveal the presence of discrete molecular units containing an intramolecular O-H···S hydrogen bond between the S atom and one of the O atoms of the COOH group. This intramolecular hydrogen bond remains in [Ag(PPh3)3(H-o-hpspa)]·EtOH and [Ag(PPh3)3(H-p-hpspa)] but in both cases polymeric structures are built on the basis of O-H···O interactions that involve the -OH substituent of the phenyl group of the sulfanylpropenoate fragment.  相似文献   

4.
The reactions of palladium(II) chloride, PPh3 and heterocyclic-N/NS ligand in a mixture of CH3CN (5 ml) and CH3OH (5 ml) produced [PdCl2(PPh3)(L1)]·(CH3CN) (1) (L1 = ADMT = 3-amino-5,6-dimethyl-1,2,4-triazine), [PdCl2(PPh3)(L2)] (2) (L2 = 3-CNpy = 3-cyanopyridine), [PdCl(PPh3)(L3)]2·(CH3CN) (3), [PdCl(PPh3)2(HL3)]Cl (4) (HL3 = Hmbt = 2-mercaptobenzothiazole). The coordination geometry around the Pd atoms in these complexes is a distorted square plane. In 3, L3 acts as a bidentate ligand, bridging two metal centers, while in 4, HL3 appears as monodentate ligand with one nitrogen donor atom uncoordinated. Complexes 1-4 are characterized by IR, luminescence, NMR and single crystal X-ray diffraction analysis. All complexes exhibit luminescence in solid state at room temperature.  相似文献   

5.
Binuclear complexes [{(η5-C5Me5)RhCl}2(μ-bsh)] (1) and [{(η5-C5Me5)IrCl}2(μ-bsh)] (2) containing N,N′-bis(salicylidine)hydrazine (H2bsh) are reported. The complexes 1 and 2 reacted with EPh3 (E = P, As) to afford cationic complexes [(η5-C5Me5)Rh(PPh3)(κ2-Hbsh)]PF6 (3), [(η5-C5Me5)Rh(AsPh3)(κ2-Hbsh)]PF6 (4), [(η5-C5Me5)Ir(PPh3)(κ2-Hbsh)]PF6 (5), and [(η5-C5Me5)Ir(AsPh3)(κ2-Hbsh)]PF6 (6) which were isolated as their hexafluorophosphate salts. Representative complexes 3 and 5 have been used as a metallo-ligand in the synthesis of binuclear complexes [(η5-C5Me5)RhCl(μ-bsh)Ru(η6-C10H14)Cl]PF6 (7) and [(η5-C5Me5)IrCl(μ-bsh)Ru(η6-C10H14)Cl]PF6 (8). The complexes under study have been fully characterized by analytical and spectral (FAB/ESI-MS, IR, NMR, electronic and emission) studies. Molecular structures of 1, 2, 3 and 5 have been determined crystallographically. Structural studies on 1 and 2 revealed the presence of extensive inter- and intra-molecular C-H···O and C-H···π weak bonding interactions. The complexes 1, 2, 3 and 5 moderately emit upon excitation at their respective MLCT bands.  相似文献   

6.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

7.
We describe the electrochemically controlled hydrogen bonding interactions between the isobutyl flavin/2,6-diferrocenylamidopyridine (2·5) and 9,10-phenanthrenequinone/1-ferrocenyl-3-hexylurea (4·6) dyads. Cyclic and square wave voltammetry studies have shown that the binding efficiencies between these moieties can be electrochemically actuated in non-polar (CH2Cl2 for 2·5) or polar (DMF for 4·6) organic solvents between three distinct states.  相似文献   

8.
Reaction of 1,3-diaryltriazenes (R-C6H4-NN-(NH)-C6H4-R, R = OCH3, CH3, H, Cl, NO2 at the para position) with [Rh(PPh3)3Cl] in ethanol in the presence of a base (NEt3) affords a family of yellow complexes (1-R) containing a PPh3, two de-protonated triazenes coordinated as bidentate N,N-donors, and an aryl (C6H4-R) fragment coordinated in the η1-fashion. A similar reaction in toluene yields a group of reddish-orange complexes (2-R) containing a PPh3, two N,N-coordinated triazenes, and a chloride. Structures of the 1-CH3 and 2-CH3 complexes have been determined by X-ray crystallography. All the 1-R and 2-R complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. The 1-R and 2-R complexes also fluoresce in the visible region under ambient condition while excited at around 400 nm. Cyclic voltammetry on these complexes shows a Rh(III)-Rh(IV) oxidation (within 0.76-1.68 vs. SCE), followed by an oxidation of the coordinated triazene ligand (except the R = NO2 complexes). An irreversible reduction of the coordinated triazene is also observed for all the complexes below −0.96 V vs. SCE. In the 1-R and 2-R complexes potential of the Rh(III)-Rh(IV) oxidation correlates linearly with the electron-withdrawing nature of the para-substituent (R).  相似文献   

9.
The 4,4′-bis(RfCH2OCH2)-2,2′-bpy ligands [Rf = n-C3F7 (1a), HCF2(CF2)3 (1b)] were prepared and then treated with [MCl2(CH3CN)2] (M = Pt or Pd) to result in the corresponding metal complexes, [MCl2(4,4′-bis(RfCH2OCH2)-2,2′-bpy)] (M = Pt 2a–b; Pd 3a–b). Both ligands and metal complexes were fully characterized by multi-nuclei NMR (1H, 19F and 13C), FTIR, and mass (GC/MS or HR-FAB) methods. The X-ray structures of 2a–b and 3a–b were studied. With terminal CF3, the structures of 2a and 3a exhibit disordered polyfluorinated regions in solid state. With terminal HCF2, the structures of 2b and 3b show a π–π stacking of the bpy planes, five-membered C–H···O hydrogen bond and an unusual intramolecular blue-shifting C–H···F–C hydrogen bond system, whereas without terminal HCF2, the structures of 2a and 3a show the similar π–π stacking, five-membered C–H···O hydrogen bond and typical orientation of polyfluorinated ponytails, but not the C–H···F–C hydrogen bond system. The CV and UV/Vis studies were also carried out.  相似文献   

10.
The reaction of 4-amino-5-ethyl-2H-1,2,4-triazole-3(4H)-thione (AETT, L1) with 2-thiophen carbaldehyde in methanol leads to the corresponding Schiff-base HL1a. The reaction of L1 with AgNO3 in ethanol gives the ionic complex [{[Ag(L1)]NO3}2]n (1). The ionic complex [(PPh3)2Ag(HL1a)2]NO3 · CH3CN (2) can be obtained by the reaction of HL1a with [(PPh3)2Ag]NO3 in methanol and acetonitrile solution, while its reaction with [(PPh3)2PdCl2] in the presence of sodium acetate in methanol leads to the neutral complex [(PPh3)2Pd(L1a)2] · 4MeOH (3). All the compounds were characterized by infrared spectroscopy, elemental analyses as well as by X-ray diffraction studies.  相似文献   

11.
Chloro phosphite complexes RuClTpL(PPh3) (1a, 1b) [L = P(OEt)3, PPh(OEt)2] and RuClTp[P(OEt)3]2 (1c) [Tp = hydridotris(pyrazolyl)borate] were prepared by allowing RuClTp(PPh3)2 to react with an excess of phosphite. Treatment of the chloro complexes 1 with NaBH4 in ethanol yielded the hydride RuHTpL(PPh3) (2a, 2b) and RuHTp[P(OEt)3]2 (2c) derivatives. Protonation reaction of 2 with Brønsted acids was studied and led to thermally unstable (above 10 °C) dihydrogen [Ru(η2- H2)TpL(PPh3)]+ (3a, 3b) and [Ru(η2-H2)Tp{P(OEt)3}2]+ (3c) complexes. The presence of the η2-H2 ligand is indicated by short T1 min values and JHD measurements of the partially deuterated derivatives. Aquo [RuTp(H2O)L(PPh3)]BPh4 (4), carbonyl [RuTp(CO)L(PPh3)]BPh4 (5), and nitrile [RuTp(CH3CN)L(PPh3)]BPh4 (6) derivatives [L = P(OEt)3] were prepared by substituting H2 in the η2-H2 derivatives 3. Vinylidene [RuTp{CC(H)R}L(PPh3)]BPh4 (7, 8) (R = Ph, tBu) and allenylidene [RuTp(CCCR1R2)L(PPh3)]BPh4 (9-11) complexes (R1 = R2 = Ph, R1 = Ph R2 = Me) were also prepared by allowing dihydrogen complexes 3 to react with the appropriate HCCR and HCCC(OH)R1R2 alkynes. Deprotonation of vinylidene complexes 7, 8 with NEt3 was studied and led to acetylide Ru(CCR)TpL(PPh3) (12, 13) derivatives. The trichlorostannyl Ru(SnCl3)TpL(PPh3) (14) compound was also prepared by allowing the chloro complex RuClTpL(PPh3) to react with SnCl2 · 2H2O in CH2Cl2.  相似文献   

12.
(PhSe)2 reacts with Br2, ethylenethiourea and PhTeBr3, further with I2, ethylenethiourea and PhTeI3, to give [PhSe(etu)][PhTeBr4] (1) (Ph = phenyl; etu = ethylenethiourea) and [PhSe(etu)][PhTeI4] (2) in very good yields.The tellurium centers present a distorted octahedral configuration, achieved through dimerization involving secondary, reciprocal Te···X interactions.In both compounds the anionic dimmers are linked through X···X interactions, attaining a one-dimensional, polymeric assembly along the b axis. Cations and anions are linked through short Se···X contacts. In addition to single crystal X-ray data, multinuclear NMR results for 1 and 2 are also presented and discussed.  相似文献   

13.
The oligoether-linked bis-benzimidazolium salt 1,1′-[1,2-ethanediylbis(oxy-1,2-ethanediyl)]bis[(3-secbutyl)benzimidazolium-1-yl]iodide (H2L1 · I2), 1,1′-[1,2-ethanediylbis(oxy-1,2-ethanediyl)]bis[(3-ethyl)benzimidazolium-1-yl]iodide (H2L2 · I2) and 1,1′-[1,2-ethanediylbis(oxy-1,2-ethanediyl)]bis[(3-secbutyl)benzimidazolium-1-yl]hexafluorophosphate (H2L1 · (PF6)2) and their three new mercury(II) and silver(I) complexes containing NHC metallacrown ethers, HgL1 · (Hg2 · I6) (1), HgL2 · I2 (2) and AgL1 · PF6 (3) were prepared and characterized. In the packing diagrams of H2L2 · I2, 1, 2 and 3 benzimidazole ring head-to-tail π-π stacking interactions are observed.  相似文献   

14.
A series of new metal-organic frameworks (MOFs) based on 9,10-bis(imidazol-1-ylmethyl)anthracene and four structurally related aromatic dicarboxylates, namely, [Cd(L)(o-bdc)]·1.25H2O (1), [Cd(L)(pydc)] (2), [Zn(L)(pydc)] (3), [Cd3(L)2(m-bdc)3] (4) and [Cd(L)(p-bdc)]·2H2O (5) (L = 9,10-bis(imidazol-1-ylmethyl)anthracene, o-H2bdc = 1,2-benzenedicarboxylic acid, H2pydc = 2,3-pyridinedicarboxylic acid, m-H2bdc = 1,3-benzenedicarboxylic acid, p-H2bdc = 1,4-benzenedicarboxylic acid) have been synthesized under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analyses, and further characterized by infrared spectra (IR), elemental analyses and powder X-ray diffraction (PXRD). Compound 1 displays a two-dimensional (2D) layer structure, which is stabilized by intramolecular hydrogen-bonding interactions. Compounds 2 and 3 are isostructural and show 2D layer structures, which are further extended by intermolecular C-H···O hydrogen-bonding interactions to form 3D supramolecular frameworks. Compound 4 has a 2D layer structure with trinuclear units [Cd3(u3-O)2]6+. Compound 5 is a 3D three-fold interpenetrating framework with a Schläfli symbol (66·8). The structural differences of these compounds indicate that the anions play important roles in the resulting structures of the MOFs. The luminescent properties were also investigated for compounds 1-5.  相似文献   

15.
16.
The reaction of sodium dimethyl(phenylsulfonyl)amidophosphate NaL (HL = C6H5SO2NHP(O)(OCH3)2) with Cu(NO3)2 · 6H2O and o-bpe (1,2-bis(pyridine-2-yl)ethane) in appropriate ratios, afford the formation of 1D coordination polymer [Cu(L)2 · o-bpe]n in good yield. The crystal structures of HL (1) and [Cu(L)2 · o-bpe]n (2) are reported. In the crystal package the molecules of 1 are linked by intermolecular hydrogen bonds formed by the phosphoryl oxygen atoms which serve as acceptors and nitrogen atoms of amide groups as donors. The crystal structure of 2 indicates the presence of unsaturated Cu(L)2 unit bridged by o-bpe ligand in the one-dimensional polymeric chain. The Cu(II) atoms have distorted 4 + 2 octahedral CuO4N2 environment formed by the oxygen atoms belonging to the sulfonyl and phosphoryl groups of two deprotonated chelate ligands and nitrogen atoms of the bridging o-bpe ligands.  相似文献   

17.
Reactions of [Ru(PPh3)3Cl2] with ROCS2K in THF at room temperature and at reflux gave the kinetic products trans-[Ru(PPh3)2(S2COR)2] (R = nPr 1, iPr 2) and the thermodynamic products cis-[Ru(PPh3)2(S2COR)2] (R = nPr 3, iPr 4), respectively. Treatment of [RuHCl(CO)(PPh3)3] with ROCS2K in THF afforded [RuH(CO)-(S2COR)(PPh3)2] (R = nPr 5, iPr 6) as the sole isolable products. Reaction of [RuCl2(PPh3)3] with tetramethylthiuram disulfide [Me2NCS2]2 gave a Ru(III) dithiocarbamate complex, [Ru(PPh3)2(S2CNMe2)Cl2] (7). This reaction involved oxidation of ruthenium(II) to ruthenium(III) by the disulfide group in [Me2NCS2]2. Treatment of 7 with 1 equiv. of [M(MeCN)4][ClO4] (M = Cu, Ag) gave the stable cationic ruthenium(III)-alkyl complexes [Ru{C(NMe2)QC(NMe2)S}(S2CNMe2)(PPh3)2][ClO4] (Q = O 8, S 9) with ruthenium-carbon bonds. The crystal structures of complexes 1, 2, 4·CH2Cl2, 6, 7·2CH2Cl2, 8, and 9·2CH2Cl2 have been determined by single-crystal X-ray diffraction. The ruthenium atom in each of the above complexes adopts a pseudo-octahedral geometry in an electron-rich sulfur coordination environment. The 1,1′-dithiolate ligands bind to ruthenium with bite S-Ru-S angles in the range of 70.14(4)-71.62(4)°. In 4·CH2Cl2, the P-Ru-P angle for the mutually cis PPh3 ligands is 103.13(3)°, the P-Ru-P angles for other complexes with mutually trans PPh3 ligands are in the range of 169.41(4)-180.00(6)°. The alkylcarbamate [C(NMe2)QC(NMe2)S] (Q = O, S) ligands in 8 and 9 are planar and bind to the ruthenium centers via the sulfur and carbon atoms from the CS and NC double bonds, respectively. The Ru-C bond lengths are 1.975(5) and 2.018(3) Å for 8 and 9·2CH2Cl2, respectively, which are typical for ruthenium(III)-alkyl complexes. Spectroscopic properties along with electrochemistry of all complexes are also reported in the paper.  相似文献   

18.
The solid-state structures of two non-metal pentaborates [Me3NCH2CH2OH][B5O6(OH)4] (1) and [4-MepyH, 4-Mepy][B5O6(OH)4] (2) have been determined by single-crystal X-ray diffraction methods. Structures 1 and 2 both contain supramolecular pentaborate frameworks held together by extensive H-bond interactions. The framework of 1 exists essentially as planes of pentaborate anions linked via three pairwise ‘planar’ β → α interactions, with a fourth β → β interaction crosslinking the planes. The framework of 2 is very similar except that one of the three pairwise linkages within the plane is replaced by pairwise ‘step-like’ bifurcated H-bonds to both α sites of a neighboring anion. The cations in 1 and the cations and neutral 4-Mepy ligands in 2 are present in the framework cavities and channels, with additional H-bond interactions existing between cations and anions.  相似文献   

19.
Dichlorodimethyltin and dichlorodiphenyltin form 1:1 adducts with 2,5-bis(4-pyridyl)-1,3,4-thiadiazole (L1). Mössbauer spectra of the compounds SnCl2(CH3)2 · L1 (1) and SnCl2(C6H5)2 · L1 · 0.3CH2Cl2 (2) are consistent with a monodimensional polymeric structure containing L1 as a bifunctional bridging ligand. The octahedral coordination geometry at the tin atom is very distorted, with a C-Sn-C bond angle of about 150° for both 1 and 2.  相似文献   

20.
Treatment of either RuHCl(CO)(PPh3)3 or MPhCl(CO)(PPh3)2 with HSiMeCl2 produces the five-coordinate dichloro(methyl)silyl complexes, M(SiMeCl2)Cl(CO)(PPh3)2 (1a, M = Ru; 1b, M = Os). 1a and 1b react readily with hydroxide ions and with ethanol to give M(SiMe[OH]2)Cl(CO)(PPh3)2 (2a, M = Ru; 2b, M = Os) and M(SiMe[OEt]2)Cl(CO)(PPh3)2 (3a, M = Ru; 3b, M = Os), respectively. 3b adds CO to form the six-coordinate complex, Os(SiMe[OEt]2)Cl(CO)2(PPh3)2 (4b) and crystal structure determinations of 3b and 4b reveal very different Os-Si distances in the five-coordinate complex (2.3196(11) Å) and in the six-coordinate complex (2.4901(8) Å). Reaction between 1a and 1b and 8-aminoquinoline results in displacement of a triphenylphosphine ligand and formation of the six-coordinate chelate complexes M(SiMeCl2)Cl(CO)(PPh3)(κ2(N,N)-NC9H6NH2-8) (5a, M = Ru; 5b, M = Os), respectively. Crystal structure determination of 5a reveals that the amino function of the chelating 8-aminoquinoline ligand is located adjacent to the reactive Si-Cl bonds of the dichloro(methyl)silyl ligand but no reaction between these functions is observed. However, 5a and 5b react readily with ethanol to give ultimately M(SiMe[OEt]2)Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6a, M = Ru; 6b, M = Os). In the case of ruthenium only, the intermediate ethanolysis product Ru(SiMeCl[OEt])Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6c) was also isolated. The crystal structure of 6c was determined. Reaction between 1b and excess 2-aminopyridine results in condensation between the Si-Cl bonds and the N-H bonds with formation of a novel tridentate “NSiN” ligand in the complex Os(κ3(Si,N,N)-SiMe[NH(2-C5H4N)]2)Cl(CO)(PPh3) (7b). Crystal structure determination of 7b shows that the “NSiN” ligand coordinates to osmium with a “facial” arrangement and with chloride trans to the silyl ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号