首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A set of C,N-chelated organotin(IV) ferrocenecarboxylates, [LCN(n-Bu)Sn(O2CFc)2] (1), [(LCN)2Sn(O2CFc)2] (2), [LCN(n-Bu)Sn(O2CCH2Fc)2] (3), [LCN(n-Bu)Sn(O2CCH2CH2Fc)2] (4), [LCN(n-Bu)Sn(O2CCHCHFc)2] (5), [LCN(n-Bu)Sn(O2CfcPPh2)2] (6), [(LCN)2Sn(O2CfcPPh2)2] (7), and [LCN(n-Bu)2Sn(O2CFc)] (8) (LCN = 2-(N,N-dimethylaminomethyl)phenyl, Fc = ferrocenyl and fc = ferrocene-1,1′-diyl) has been synthesized by metathesis of the respective organotin(IV) halides and carboxylate potassium salts and characterized by multinuclear NMR and IR spectroscopy. The spectral data indicated that the tin atoms in diorganotin(IV) dicarboxylates bearing one C,N-chelating ligand (1 and 3-6) are seven-coordinated with a distorted pentagonal bipyramidal environment around the tin constituted by the n-butyl group, the chelating LCN ligand and bidentate carboxylate. Compounds 2 and 7 possessing two chelating LCN ligands comprise octahedrally coordinated tin atoms and monodentate carboxylate donors, whereas compound 8 assumes a distorted trigonal bipyramidal geometry around tin with the carboxylate binding in unidentate fashion. The solid state structures determined for 1⋅C6D6 and 2 by single-crystal X-ray diffraction analysis are in agreement with spectroscopic data. Compounds 1, 3-5, and 8 were further studied by electrochemical methods. Whereas the oxidations of ferrocene units in bis(carboxylate) 2 and monocarboxylate 8 proceed in single steps, compound 1 undergoes two closely spaced one-electron redox waves due to two independently oxidized ferrocenyl groups. The spaced analogues of 2, compounds 3-5, again display only single waves corresponding to two-electron exchanged.  相似文献   

2.
Six new organotin carboxylates based on 1,3-benzenedicarboxylic acid and 1,4-benzenedicarboxylic acid derivatives, namely (Ph3Sn)2(2,5-L1)(C2H5OH)2 (1) (2,5-H2L1 = 2,5-dibenzoylterephthalic acid), (Ph3Sn)2(2,5-L2)(C2H5OH)2 (2) (2,5-H2L2 = 2,5-bis(4-methylbenzoyl)terephthalic acid), (Ph3Sn)2(2,5-L3)(C2H5OH)2 (3) (2,5-H2L3 = 2,5-bis(4-ethylbenzoyl)terephthalic acid), [(n-Bu2Sn)4(4,6-L1)O2(OH)(OC2H5)]2·2(C2H5OH) (4) (4,6- H2L1 = 4,6-dibenzoylisophthalic acid), [(n-Bu2Sn)4(4,6-L1)O2(OH)(OC4H9)]2·2(C4H9OH) (5) and [(n-Bu2Sn)4(4,6-L2)O2(OH)(OC2H5)]2·2(C2H5OH) (6) (4,6-H2L2 = 4,6-bis(4-methylbenzoyl)isophthalic acid), have been synthesized. All the organotin carboxylates have been characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy and X-ray crystallography diffraction analyses. The structural analysis reveals that complexes 1-3 show similar structures, containing binuclear triorganotin skeletons. The significant intermolecular O-H?O hydrogen bonds linked the complexes 1-3 to form a novel 2D network polymer with 38-member macrocycles. In complexes 4-6, two Sn4O4 ladders are connected by two 1,3-benzenedicarboxylic acid derivatives to yield ladder-like octanuclear architectures and form macrocycle with 24 atoms. In addition, the antitumor activities of complexes 1-6 have been studied.  相似文献   

3.
New organotin(IV) carboxylates, [n-Bu2SnL2] (1), [Et2SnL2] (2), [Me2SnL2] (3), [n-Oct2SnL2] (4), [n-Bu3SnL] n (5), [Me3SnL] n (6), and [Ph3SnL] n (7), where L?=?3-(4-bromophenyl)-2-ethylacrylate, were synthesized and characterized by elemental analysis, FT-IR, and multinuclear NMR (1H, 13C, and 119Sn). Spectroscopic studies confirm coordination of L to the organotin moiety via COO group. Single-crystal X-ray analysis reveals bridging mode of coordination in 6. Packing diagram established a supramolecular cage-like structure for 6 due to Sn–O interactions (3.287?Å). Subsequent antimicrobial activities proved them to be active biologically.  相似文献   

4.
5.
Organotin(IV) complexes are known for their outstanding structural diversity and applications. Organotin(IV) carboxylates and dithiocarboxylates form an important class of organotin(IV) compounds. The structural diversity of these compounds emanates from several features including flexibility in coordination geometries, coordination numbers, and versatility of the ligands to engage in different modes of chelation from monodentate to bidentate. Triorganotin(IV) complexes with various ligands mostly demonstrate tetrahedral or trigonal bipyramidal symmetry with some distortions, while diorganotin(IV) and chlorodiorganotin(IV) complexes have variation of geometries and coordination numbers. Some monoorganotin(IV) complexes have also been reported with pentagonal bipyramidal geometries.  相似文献   

6.
Six new organotin(IV) complexes were synthesized by direct reaction of RSnCl3 (R?=?Me, Bu and Ph) or R2SnCl2 (R?=?Me, Bu and Ph) and 2-hydroxyacetophenone thiocarbohydrazone [H2APTC] under purified nitrogen in the presence of base in 1?:?2?:?1 molar ratio (metal: base: ligand). Complexes 2–7 have been characterized by elemental analyses, molar conductivity, UV-Visible, IR and 1H NMR spectral studies. Complexes 27 are non-electrolytes. The molecular structure of [Me2Sn(APTC)]?·?(C2H5OH) (5) has been determined by X-ray diffraction analysis. The thiocarbohydrazone ligand (1) and 27 have been tested for antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella typhi and Enterococci aeruginosa.  相似文献   

7.
A novel ferrocene-containing ligand 3-trifluoromethyl-5-ferrocenyl -pyrazol-1-yl-acetic acid (LCOOH) and three organotin(IV) carboxylate derivatives [Ph4Sn2O(OCH3)(OOCL)]2(1), [BuSnO(OOCL)]6(2) and [Bu4Sn2O(OOCL2)2] (3) have been synthesized and structurally characterized by means of FT-IR, elemental analysis, 1H NMR, 119Sn NMR, X-ray crystallography and cyclic voltammetry. Both complexes 1 and 3 are centrosymmetric with ladder framework. Complex 2 is a hexanuclear one with drum structure. Furthermore, their anti-tumor activities were also evaluated, using HepG2 human hepatocellular liver carcinoma cells, A549 human lung carcinoma cells and B16-F10 melanoma cells. Complex 1 displayed the best cytotoxicity and can be pointed out as a promising substrate to be subject of further investigations.  相似文献   

8.
The new sodium bis(2-pyridylthio)acetate ligand, Na[(pyS)2CHCO2], has been prepared in ethanol solution using 2-mercaptopyridine, dibromoacetic acid and NaOH. New mono- and di-organotin(IV) derivatives containing the anionic bis(2-pyridylthio)acetate have been synthesized from reaction between SnRnCl4−n (R = Me, Ph and nBu, n = 1-2) acceptors and Na[(pyS)2CHCO2]. Mono-nuclear complexes of the type {[(pyS)2CHCO2]RnSnCl4−n−1} have been obtained and characterized by elemental analyses, FT-IR, ESI-MS, multinuclear (1H and 119Sn) NMR spectral data and X-ray crystallography. ESI-MS spectra of methanol solution of the complexes show the existence of hydrolysed species. Attempts to crystallize the dimethyltin(IV) derivative (3), from acetonitrile solution yield the dimeric dicarboxylatotetramethyldistannoxane (8), which was characterized by single crystal diffraction analysis.  相似文献   

9.
Four complexes: [Bu2(L1)SnOSn(L1)Bu2]2 (1), [Bu2(L2)SnOSn(L2)Bu2]2 (2), [Bu2(L3)SnOSn(L3)Bu2]2 (3), and [Bu2(L4)SnOSn(L4)Bu2]2 (4), (HL1 = 2-(4-methylbenzoyl)benzoic acid, HL2 = 2-(2,4-diethylbenzoyl)benzoic acid, HL3 = 2-(4-chlorobenzoyl)benzoic acid, HL4 = 2-(4-isopropylbenzoyl)benzoic acid) have been prepared and structurally characterized by means of elemental analysis and vibrational, 1H NMR and FT-IR spectroscopies. The crystal structures of all complexes have been determined by X-ray crystallography. Three distannoxane rings are present to the dimeric tetraorganodistannoxane of planar ladder arrangement. Each structure is centro-symmetric and features a central rhombus Sn2O2 unit with two additional tin atoms linked at the O atoms. Complex 1 exhibited good antibacterial and antitumor activities and have a potential to be used as drugs.  相似文献   

10.
Three new organotin(IV) carboxylates, {[n-Bu2Sn(O2CC4H4NOS2)]2O}2 (1), n-Bu2Sn(O2CC4H4NOS2)2 (2) and [PhSn(O)O2CC4H4NOS2]6 · 3H2O (3) were synthesized by the reaction of di-n-butyltin/diphenyltin oxide and rhodanine-N-acetic acid. The complexes 1-3 are characterized by elemental, IR, 1H, 13C and 119Sn NMR and X-ray crystallography diffraction analyses. The complex 1 has a tetranuclear structure based on a planar four-membered Sn2O2 ring, while complex 2 is a hexa-coordinated monomer. As for complex 3, it adopts the hexameric drum-shaped structure. The supramolecular structure of 1 has been found to consist of one-dimensional molecular chain built up by intermolecular non-bonded S?O interactions. The salient feature of the supramolecular structure of complex 2 is that of a one-dimensional polymer, in which intermolecular Sn?O, S?O and S?S interactions are recognized.  相似文献   

11.
Reaction of organotin(IV) chloride(s) with 2-benzoylpyridine-N(4)-cyclohexylthiosemicarbazone, [HL] (1) yielded [MeSnCl2(L)] (2), [BuSnCl2(L)] (3), [Me2SnCl(L)] (4), and [Ph2SnCl(L)] (5). The ligand (1) and its organotin(IV) complexes have been characterized by CHN analyses, molar conductivity, UV-Vis, FT-IR, 1H, 13C, and 119Sn NMR spectral studies. The molecular structure of 5 was also determined by X-ray diffraction. There are two independent molecules in the asymmetric unit and the central tin(IV) atom is six-coordinate in distorted octahedral geometry. The ligand (1) and complexes were screened for their in vitro antibacterial activities. The cytotoxic activities of 15 were tested against A2780 and A2780/Cp8 cancer cell lines. The compounds have better antibacterial activities than the free ligand; 25 are more potent cytotoxic agents than 1, while the diphenyltin(IV) 5 is more active with IC50 values of 0.05 and 0.54?µmol?L?1 against A2780 and A2780/Cp8 cell lines, respectively.  相似文献   

12.
Some new tri-, chlorodi- and diorganotin(IV) dithiocarboxylates (110) of 4-benzylpiperidine-1-carbodithioate ligand (L), with general formulae R3SnL {R = n-C4H9 (1), C6H11 (2), CH3 (3) and C6H5 (4)}, R2SnClL {R = n-C4H9 (5), C2H5 (7), CH3 (9)} and R2SnL2 {R = n-C4H9 (6), C2H5 (8), CH3 (10)}, have been synthesized by the reaction of organotin(IV) chlorides with the ligand-salt in the appropriate molar ratio. Elemental analysis, Raman, IR, multinuclear NMR (1H, 13C and 119Sn) and X-ray crystallographic studies have been undertaken to elucidate the structures of the complexes, both in solution and in solid state. Single-crystal X-ray diffraction study indicate trimeric, dimeric, supramolecular cyclic and supramolecular zig–zag chain structures for complexes 2, 4, 6 and 9, respectively. Square-pyramidal geometry is attributed to complex 9 on the basis of the τ value (0.4). A subsequent antimicrobial study indicates that the compounds are biologically active.  相似文献   

13.
New organotin(IV) complexes with empirical formula Sn(SNNNS)R2, where SNNNS is the dianionic form of 2,6-diacetylpyridine Schiff bases of S-methyldithiocarbazate (H2dapsme) or S-benzyldithiocarbazate (H2dapsbz) and R = Ph or Me, have been prepared and characterized by IR, UV-Vis, NMR and Mössbauer spectroscopic techniques and conductance measurements. The molecular structures of the Sn(dapsme)R2 (R = Ph and Me) have been determined by single crystal X-ray diffraction techniques. Both complexes have a distorted pentagonal-bipyramidal geometry in which the tin is coordinated by a dinegatively charged pentadentate chelating agent via pyridine nitrogen, two azomethine nitrogens, and two thiolate sulfurs. The five donors (N3S2) provided by the Schiff base occupy the equatorial plane close to a pentagonal planar array while the carbanion ligands occupy axial sites.  相似文献   

14.
New mono-, di- and tri-organotin(IV) derivatives containing the neutral bis(2-pyridylthio)methane ligand, [(pyS)2CH2] and tris(2-pyridylthio)methane ligand, [(pyS)3CH] have been synthesized from reaction with SnRnCl4−n (R = Me, nBu, Ph and Cy, n = 1-3) acceptors. Mono-nuclear adducts of the type {[(pyS)2CH2]RnSnCl4−n} and {[(pyS)3CH]RnSnCl4−n} have been obtained and characterized by elemental analyses, FT-IR, ESI-MS, multinuclear (1H and 119Sn) NMR spectral data. The 1H and 119Sn NMR and ESI-MS data suggest for the triorganotin(IV) derivatives a complete dissociation of the compounds in solution. The mono- and di-organotin(IV) derivatives show a greater stability in solution, and their spectroscopic data are in accordance with the existence of six-coordinated RSnCl3N2 or R2SnCl2N2 species.  相似文献   

15.
Reactions of pyruvic acid hydrazone series [pyruvic acid thiophenecarbonyl hydrazone (L1), pyruvic acid 4-hydroxybenzoylhydrazone (L2), pyruvic acid salicyloylhydrazone (L3), pyruvic acid benzoylhydrazone (L4)], or salicylaldehyde hydrazone Schiff base ligand [salicylaldehyde isonicotinoylhydrazone (L5)] with different alkyltin salts result in six new organotin(IV) compounds, {(n-Bu)2Sn[2-SC4H3CON2C(CH3)CO2](HOC3H7-i)}2 (1), [{(n-Bu)2SnCl(O)(n-Bu)2 Sn(O)[C6H4CON2C(CH3)CO2]Sn(n-Bu)2(HOCH3)}2] (2), {(o-ClBz)2Sn[4-HOC6H4CON2C(CH3) CO2] (HOC2H5)}2 (3), {(n-C8H17)2Sn[2-HOC6H4CON2C(CH3)CO2](H2O)}2 (4), {(n-Bu)2Sn[C6H5 CON2C(CH3)CO2][HOSn(n-Bu)3]}2 (5), and {[(n-C4H9)SnCl2][4-NHC5H4CON2CH (C6H4O-2)]+ (6), which have been characterized by single crystal X-ray diffraction, elemental analysis, IR, 1H and 119Sn NMR. In compounds 1, 3, 4, weak-bridged dimers are found, in which the two tin atoms are linked by a pair of monodentate bridges. Each pyruvic acid hydrazone ligand serves as an enolic tridentatic ligand. Compound 2 contains dimeric units of {Sn6(L2)2(n-Bu)6(HOCH3)2} that are further connected by two pairs of monodentate bridges into an 1D weak-bridged polymeric chain, in which there also exists a fascinating dichlorodistannoxane ladder structure. Studies show that the bulk and steric hindrance of the alkyl groups and the coordinated solvent molecule bonding to Sn center have little effect on the geometry of the weak-bridge for compounds 1-4. A similar weak-bridged dimeric structure is also found in compound 5; in this case, however, there is no coordinated solvent molecule and the corresponding coordination site is replaced by the trialkyltin hydroxide. Compound 6 exhibits a rare 1D supermolecular chain constructed from the zwitterionic {Sn(L5)(n-Bu)Cl2} units connected by the intermolecular N-H?Cl hydrogen bonds. The thermal stability of compound 1 was also studied.  相似文献   

16.
Seven Schiff base adducts of organotin(IV), RSnLCl2, which L is o-vanillin-2-thiophenoylhydrazone, and R is n-C4H9 (1), Me (2), Ph (3), and [R2SnL], which L is o-vanillin-2-thiophenoylhydrazone, R is n-C4H9 (4), Me (5), Ph (6), PhCH2 (7) have been synthesized. Those products were characterized by elemental analysis, IR, 1H, 13C and 119Sn NMR spectra. The crystal and molecular structures of compounds 1, 4, and 6 have been determined by X-ray single crystal diffraction. In the crystal of compound 1 the tin atom is rendered six-coordinate in a distorted octahedral configuration by coordinating with the N atom of the Schiff base ligand, in compounds 4 and 6 the central tin atoms are five-coordinate in distorted trigonal-bipyramidal geometry and the comparison of the IR spectra reveal that disappearance of the bands assigned to carboxyl unambiguously conforms the ligand coordinate with the tin atom in enol form.  相似文献   

17.
Abstract

The N(4)-methylthiosemicarbazone derivatives H2DDMT (1) and H2DMMT (2) have been prepared from the reaction of 4-methylthiosemicarbazide with 2,3-dihydroxybenzaldehyde and 2-hydroxy-5-methylbenzaldehyde, respectively. Six new organotin(IV) complexes, [MeSnCl(DDMT)] (3), [BuSnCl(DDMT)] (4), [PhSnCl(DDMT)] (5), [MeSnCl(DMMT)] (6), [BuSnCl(DMMT)] (7), and [PhSnCl(DMMT)] (8) have been synthesized by direct reaction of corresponding organotin(IV) chloride(s) with these ligands. The ligands and their compounds have been characterized by elemental analysis, molar conductivity, UV–Vis, FT-IR, and NMR (1H, 13C, and 119Sn) spectroscopy. The molecular structures of 1 and 2 were determined by X-ray crystallography. Spectroscopic data suggested that the ligands were coordinated to tin(IV) as dinegative tridentate via phenoxide-O, azomethine-N, and thiolate-S atoms. The crystal structures revealed that the ligands exist in thione form in the solid state. In vitro cytotoxicity assays were carried out for all the compounds against MCF-7 cancer cell line. The results have shown that different organotin(IV) groups showed characteristic differences in their biological activity.  相似文献   

18.
The complex [(C6H5)2SnCl(HMNA)] (1) where H2MNA is thioamide 2-mercapto-nicotinic acid has been synthesized by reacting a methanolic solution of di-chloro-di-phenyltin(IV) Ph2SnCl2 with an aqueous solution of 2-mercapto-nicotinic acid, containing twofold amount of potassium hydroxide. The Sn/ligand molar ratio is 2:1. The complex was characterized by elemental analysis, FT-IR and Mössbauer spectroscopic techniques. In addition the crystal structure of the molecule was determined by an X-ray diffraction at 293(2) K. C18H14ClNO2SSn is monoclinic, space group P21/n, a = 15.089(3) Å, b = 15.846(3) Å, c = 16.691(3) Å, β = 105.57(3)°, Z = 8. The ligand coordinates to the metal center through the exocyclic sulfur and the heterocyclic nitrogen atoms, forming a four membered ring. The coordination sphere around the tin(IV) ion is completed with two carbon atoms from the two phenyl groups and one chlorine atom. The geometry around the tin atom can be described either as trigonal bipyramidal or tetragonal pyramidal. Finally, the influence of the complex [(C6H5)2SnCl(HMNA)] (1) upon the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX) was also kinetically and theoretically studied and the results compared with the ones of the corresponding binuclear complex [(C6H5)3Sn(MNA)Sn(C6H5)3 · (acetone)] (2) reported in the literature.  相似文献   

19.
The di- and triorganotin(IV) derivatives of anthracenecarboxylic acid, Ph2MeSnOC(O)C14H9 (2), Me3SnOC(O)C14H9 (3), Me2Sn[OC(O)C14H9]2 · CH3OH (4) Ph3SnOC(O)C14H9 · CH3OH (5), Ph2EtSnOC(O)C14H9 (6), Ph2Sn[OC(O)(C14H9)]2 (7) and PhMe2SnOC(O)C14H9 (8) were synthesized by the reaction of Ph2MeSnI, Me3SnCl, Me2SnCl2, Ph3SnCl, Ph2EtSnI, Ph2SnCl2, and PhMe2SnI with 9-anthracenecarboxylic acid, respectively, with the aid of potassium iso-propoxide. All complexes were characterized by elemental analysis, mass spectrometry, IR, 1H, 13C and 119Sn NMR spectroscopes. The molecular structures of complexes 2, 3 and 4 were determined by single crystal X-ray analysis. The X-ray structures reveal that complex 2 and 3 adopt a polymeric trans-C3SnO2 trigonal bipyamidal configuration with the oxygen atoms occupying axial positions. Complex 4 adopts a monomeric structure with two carboxylates coordinated to tin in a monodentate form from axial and equatorial positions, and with the coordination number raised to five as the methanol occupies the apical position of the trigonal bipyramid.  相似文献   

20.
Four new tin(IV)/organotin(IV) complexes, [SnCl3(BPCT)] (2), [MeSnCl2(BPCT)] (3), [Me2SnCl(BPCT)] (4), and [Ph2SnCl(BPCT)] (5), have been synthesized by the direct reaction of 2-benzoylpyridine-N(4)-cyclohexylthiosemicarbazone [HBPCT, (1)] and stannic chloride/organotin(IV) chloride(s) in absolute methanol under purified nitrogen. HBPCT and its tin(IV)/organotin(IV) complexes (25) were characterized by CHN analyses, molar conductivity, UV-Vis, FT-IR, and 1H NMR spectral studies. In all the complexes, tin(IV) was coordinated via pyridine-N, azomethine-N, and thiolato-S from 1. The molecular structure of 2 has been determined by X-ray single-crystal diffraction analysis. Complex 2 is a monomer and the central tin(IV) is six-coordinate in a distorted octahedral geometry. The crystal system of 2 is monoclinic with space group P121/n1 and the unit cell dimensions are a?=?8.3564(3)?Å, b?=?23.1321(8)?Å, c?=?11.9984(4)?Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号