首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper(II) complex with -piperidine-3-carboxylic acid ( -Hpipe-3):[Cu( -pipe-3)2(H2O)] and cobalt(II) and nickel(II) complexes with piperidine-4-carboxylic acid (Hpipe-4):[M(Hpipe-4)2(H2O)4]Cl2 (M: Co, Ni) have been prepared and characterized by means of IR and powder diffuse reflection spectra, thermal analysis, and magnetic susceptibility. The crystal structures of these complexes have been determined by X-ray diffraction. The crystal of [Cu( -pipe-3)2(H2O)] is orthorhombic with the space group Pbcn. The copper atom is in a square pyramidal geometry, ligated by two carboxylato oxygen atoms, two nitrogen atoms, and a water molecule. One molecule of this complex consists of either -piperidine-3-carboxylic acid or -piperidine-3-carboxylic acid. The crystals of [M(Hpipe-4)2(H2O)4]Cl2 are monoclinic with space group P21/n. In these complexes the metal atom is in an octahedral geometry ligated by two carboxylato oxygen atoms and four water molecules.  相似文献   

2.
The synthesis and characterization of Co(II), Ni(II) and Cu(II) complexes of 2-acetyl-2-thiazoline hydrazone (ATH) are reported. Elemental analysis, IR spectroscopy, UV–Vis–NIR diffuse reflectance and magnetic susceptibility measurement, as well as, in the case of copper complex EPR spectroscopy, have been used to characterize the complexes. In addition, the structure of [NiCl2(ATH)2] (2) and [{CuCl(ATH)}2(μ-Cl)2] (3) have been determined by single crystal X-ray diffraction. In all complexes, the ligand ATH bonds to the metal ion through the imine and thiazoline nitrogen atoms. X-ray data indicates that the environment around the nickel atom in 2 may be described as a distorted octahedral geometry with the metallic atom coordinated to two chlorine atoms, two thiazoline nitrogen atoms and two imino nitrogen atoms. With regard to 3, it can be said that its structure consists of dimeric molecules in which copper ions are bridge by two chlorine ligands. The geometry about each copper ion approximates to a distorted square pyramid with each copper atom coordinated to one thiazoline nitrogen atom, one imine nitrogen atom, one terminal chlorine ligand and two bridge chlorine ligands. In compound 3, magnetic susceptibility measurements in the temperature range 2–300 K show an intradimer antiferromagnetic interaction (J = −7.5 cm−1).  相似文献   

3.
Complexes of general formula M[H2B(Me2pz)2]2, [where M = Co(II), Ni(II), Cu(II), and Zn(II)] are characterized by thermal analysis and complementary techniques. Mixtures of boron and metal oxides are found as final residues. Relative thermal stability (Ni > Cu > Co = Zn) and thermal behaviour are discussed. Melting and sublimation data are compared with those referred to in the literature.  相似文献   

4.
An asymmetric bidentate Schiff-base ligand (2-hydroxybenzyl-2-furylmethyl)imine (L–OH) was prepared. Three complexes derived from L–OH were synthesized by treating an ethanolic solution of the appropriate ligand with an equimolar amount of metallic salt. Three complexes, Cu2(L–O?)2Cl2 (1), Ni(L–O?)2 (2) and Co(L–O?)3 (3), have been structurally characterized through elemental analysis, IR, UV spectra and thermogravimetric analysis. Single crystal X-ray diffraction shows metal ions and ligands reacted with different proportions 1?:?1, 1?:?2 and 1?:?3, respectively, so copper(II), nickel(II), and cobalt(III) have different geometries.  相似文献   

5.
《Journal of Coordination Chemistry》2012,65(17-18):1611-1619
Two new series of mononuclear and homobinuclear Co(II), Ni(II) and Cu(II) complexes with mono- and bis-azo compounds derived from 2,7-dihydroxynaphthalene and anthranilic acid or o-aminophenol are prepared and characterized by elemental and thermal analyses, conductance, IR, electronic, ESR spectra and magnetic moment measurements. The ligand field splitting parameters and Racah constant are calculated. The spectral and magnetic results obtained are utilized to determine the geometries around the metal(II) ion. The geometry of the complex formed depends on the structure of the ligand and the type of metal(II) ion. The mode of bonding of the ligand with the metal ions is deduced from IR spectra.  相似文献   

6.
Four new nickel(II), zinc(II), and cobalt(II) complexes, [Zn(L1)2]?·?H2O (1), [Ni(L1)2]?·?H2O (2), [Ni(L2)2] (3), and [Co(L3)2]?·?H2O (4), derived from hydroxy-rich Schiff bases 2-{[1-(5-chloro-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL1), 2-{[1-(2-hydroxy-3-methoxyphenyl)methylidene]amino}-2-ethylpropane-1,3-diol (HL2), and 2-{[1-(5-bromo-2-hydroxyphenyl)methylidene]amino}-2-methylpropane-1,3-diol (HL3) have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray determination. Each metal in the complexes is six-coordinate in a distorted octahedral coordination. The Schiff bases coordinate to the metal atoms through the imino N, phenolate O, and one hydroxyl O. In the crystal structures of HL1 and the complexes, molecules are linked through intermolecular O–H···O hydrogen bonds, forming 1-D chains. The urease inhibitory activities of the compounds were evaluated and molecular docking study of the compounds with the Helicobacter pylori urease was performed.  相似文献   

7.
In this study the synthesis, crystal structure and characterization of three new transition metal polynuclear compounds with formula [Cu(dipm)(μ-dca)2]n(H2O) (1), [Ni(dipm)(μ-dca)2]n(C2H6O)1/2 (2) and [Cd(dipm)(μ-dca)2]n (3) (in which dipm = bis(pyrimidin-2-yl)amine and dca = dicyanamide) are reported. The isostructural compounds 1 and 2 contain a double-bridging end-to-end dca unit connecting two metal ions and a single bridging end-to-end dca unit between subsequent metals. Compound 3 exhibits only single bridging end-to-end dca units, oriented in three directions, giving rise to a 3D framework.  相似文献   

8.
Schiff-base complexes of cobalt(II), nickel(II), copper(II) and, zinc(II) with 3-ethoxysalicyliden-p-aminoacetophenoneoxime (HL) were prepared and characterized on the basis of elemental analyses, IR, 1H- and 13C-NMR, electronic spectra, magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses (TGA). A tetrahedral geometry has been assigned to the complexes.  相似文献   

9.
A tridentate Schiff base ligand [(CH3)2NCH2CH2N=C(CH3)C6H4OH)] (LH) has been synthesized from 2-hydroxyacetophenone and 2-dimethylaminoethylamine. This ligand forms the neutral complexes [Co(L)(N3){o-(CH3C=O)C6H4O}] (1) and [Co(L)(SCN){o-(CH3C=O)C6H4O}]·1/2H2O (2) in presence of equivalent amount of Co(II) acetate, and sodium azide for 1 and sodium thiocyanate for 2. The complexes have been characterized by spectroscopic and crystallographic methods. The coordination geometry around Co(III) in both the complexes is distorted octahedral with one tridentate ligand L, one bidentate 2-hydroxyacetophenone and one monodentate azide for 1 and thiocyanate for 2. The azide and thiocyanate ligands in the two complexes occupy different positions relative to the coordination sites of L.  相似文献   

10.
Reduction of 2-cyanopyridine by sodium in the presence of 3-piperidylthiosemicarbazide produces 2-pyridineformamide 3-piperidylthiosemicarbazone, HAmpip. Complexes with iron(III), cobalt(II,III) copper(II) and zinc(II) have been prepared and characterized by molar conductivities, magnetic susceptibilities and spectroscopic techniques. In addition, the crystal structures of HAmpip, [Fe(Ampip)2]ClO4, [Cu(HAmpip)Cl2]·CH3OH and [Zn(HAmpip)Br2]·C2H6SO have been determined. Coordination is via the pyridyl nitrogen, imine nitrogen and thiolato or thione sulfur when coordinating as the anionic or neutral ligand, respectively.  相似文献   

11.
The pendant‐armed ligands L1 and L2 were synthesized by N‐alkylation of the four secondary amine groups of the macrocyclic precursor L using o‐nitrobenzylbromide (L1) and p‐nitrobenzylbromide (L2). Nitrates and perchlorates of CuII, NiII and CoII were used to synthesize the metal complexes of both ligands and the complexes were characterized by microanalysis, MS‐FAB, conductivity measurements, IR and UV‐Vis spectroscopy and magnetic studies. The crystal structures of L1, [CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN, [CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH and [NiL2](ClO4)2·3CH3CN·H2O were determined by single crystal X‐ray crystallography. These structural analysis reveal the free ligand L1, three mononuclear endomacrocyclic complexes {[CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN and [NiL2](ClO4)2·3CH3CN·H2O} and one binuclear complex {[CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH} in which one of the metals is in the macrocyclic framework and the other metal is outside the ligand cavity and coordinated to four nitrate ions.  相似文献   

12.
Two new copper(II) complexes, [CuL2] (1) and [Cu2L2(NCS)2] · 2CH3CN (2) (HL = 2-bromo-4-chloro-6-[(2-morpholin-4-ylethylimino)methyl]phenol), have been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray diffraction. Complex 1 was synthesized by reaction of HL with copper(II) acetate in methanol, while 2 was synthesized by adding ammonium thiocyanate to a methanol/acetonitrile (V : V = 2 : 1) solution of 1. Complex 1 crystallizes in the P21/n space group, and the thiocyanato-bridged dinuclear copper(II) complex, 2, crystallizes in the Pbcn space group. The Cu in 1 is four-coordinate square-planar with two imine N and two phenolate O atoms from two Schiff-base ligands. The Cu in 2 is five-coordinate square-pyramidal with NNO donor atoms of one Schiff-base ligand and one N atom of a bridging thiocyanate ligand defining the basal plane, and with one S atom of another bridging thiocyanate ligand occupying the apical position.  相似文献   

13.
The simultaneous determination of cobalt, copper and nickel using 1-(2-thiazolylazo)-2-naphthol (first figure of this article) by spectrophotometric method is a difficult problem in analytical chemistry, due to spectral interferences. By multivariate calibration methods, such as partial least squares (PLS) regression, it is possible to obtain a model adjusted to the concentration values of the mixtures used in the calibration range. Orthogonal signal correction (OSC) is a preprocessing technique used for removing the information unrelated to the target variables based on constrained principal component analysis. OSC is a suitable preprocessing method for PLS calibration of mixtures without loss of prediction capacity using spectrophotometric method. In this study, the calibration model is based on absorption spectra in the 550-750-nm range for 21 different mixtures of cobalt, copper and nickel. Calibration matrices were formed from samples containing 0.05-1.05, 0.05-1.30 and 0.05-0.80 μg·mL^-1 for cobalt, copper and nickel, respectively. The root mean square error of prediction (RMSEP) for cobalt, copper and nickel with OSC and without OSC were 0.007, 0.008, 0.011 and 0.031,0.037, 0.032 μg· mL^-1, respectively. This procedure allows the simultaneous determination of cobalt, copper and nickel in synthetic and real samples and good reliability of the determination was proved.  相似文献   

14.
Cobalt(II), nickel(II), and copper(II) (1, 2, and 3) complexes of the dianionic form of the bis(phenolate) ligand N,N-bis(3,4-dimethyl-2-hydroxybenzyl)-N',N'-dimethylethylenediamine (H2L) have been synthesized by electrochemical oxidation of the appropriate metal in an acetonitrile solution of the ligand. When copper is used as the anode, the addition of 1,10-phenanthroline to the electrolytic phase gave rise to a different compound [CuL]2.2CH3CN (4). The compounds [CoL]2.2CH3CN (1), [Ni2L2(H2O)].H2O (2), [CuL]2.3H2O (3), and [CuL]2.2CH3CN (4) were characterized by microanalysis, IR, electronic spectroscopy, FAB mass spectrometry, magnetic measurements and by single-crystal X-ray diffraction. The crystal structures show that the complexes have a dinuclear structure. In compounds 1, 3, and 4, two metal ions are coordinated by the two amine nitrogens and the two phenol oxygen atoms of a deprotonated pendant phenol ligand, with one phenolic oxygen atom from ligand acting as a bridge. In compounds 1 and 3, each metal center has a geometry that is closest to trigonal bipyramidal. Magnetic susceptibility data for both compounds show an antiferromagnetic coupling with 2J = -15 cm(-1) for the cobalt(II) complex and a strong antiferromagnetic coupling with 2J = -654 cm(-1) for the copper(II) complex. However, in 4 the geometry around the metal is closer to square pyramidal and the compound shows a lower antiferromagnetic coupling (2J = -90 cm(-1)) than in 3. The nickel atoms in the dimeric compound 2 are hexacoordinate. The NiN2O4 chromophore has a highly distorted octahedral geometry. In this structure, a dianionic ligand binds to one nickel through the two amine nitrogen atoms and the two oxygen atoms and to an adjacent nickel via one of these oxygen atoms. The nickel atoms are linked through a triple oxygen bridge involving two phenolic oxygens, each from a different ligand, and an oxygen atom from a water molecule. The two nickel ions in 2 are ferromagnetically coupled with 2J = 19.8 cm(-1).  相似文献   

15.
A chiral Schiff base complex, bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato) cobalt(II) was prepared newly and characterized to be a distorted tetrahedral trans-[CoN2O2] coordination geometry. Organic/inorganic hybrid materials containing the related cobalt(II), nickel(II), copper(II), and zinc(II) complexes and photochromic azobenzene in polymethylmethacrylate (PMMA) cast films were assembled for comparison of their flexibility and molecular arrangement in the photofunctional medium. Characterization of each component and hybrid materials was carried out by means of absorption and CD spectra and thermal analysis (TG–DTA and DSC). Moreover, we have attempted to observe changes of conformation and/or molecular arrangement of the complexes or azobenzene induced by cistrans photoisomerization of azobenzene after alternate irradiation of polarized UV and visible light. Gradual increase of optical anisotropy was observed for all the hybrid materials regardless of flexibility of Schiff base complexes, and the degree of dichroism and weak intermolecular interactions were discussed based on polarized absorption electronic spectra.  相似文献   

16.
Four new metal-radical complexes - [Cu(NIT3Py)2(DTB)2] 1, [Co(NIT3Py)2(DTB)2(CH3OH)2] 2, [Cu(NIT4Py)2(DTB)2(H2O)2] 3, [Co(NIT4Py)2(DTB)2(H2O)2] 4, (NIT3Py = 2-(3-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], NIT4Py = 2-(4-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide], DTB = 3,5-dinitrobenzoic anion) have been synthesized by using transition metal ions, nitronyl nitroxide radicals as spin carriers, and incorporating 3,5-dinitrobenzoic acid (DTB) as a coligand.  相似文献   

17.
Two new mononuclear cobalt(II) complexes [Co(ntb)(pic)](ClO4) · (CH3OH)2.35 (1) and [Co(ntb)(nic)](ClO4) · CH3OH (2) were synthesized and structurally characterized, where ntb is tris(2-benzimidazolylmethyl)amine, pic is the anion of picolinic acid, and nic is the anion of nicotinic acid. The X-ray analysis indicates that the Co(II) center is six-coordinate in distorted octahedral and five-coordinate in distorted trigonal bipyramidal geometry for 1 and 2, respectively. In 1, the picolinate anion coordinates to Co(II) in a bidentate μ2-N,O chelating mode. In 2, the nicotinate anion coordinates with Co(II) through a monodentate carboxylate oxygen. 1-D chain structures were formed by intermolecular hydrogen bonds in the two complexes and π–π interactions are important for the stabilization of the structures.  相似文献   

18.
19.
Four new mononuclear complexes, [Ni(L1)(NCS)2] (1), [Ni(L2)(NCS)2] (2), [Co(L1)(N3)2]ClO4 (3), and [Co(L2)(N3)2]ClO4 (4), where L1 and L2 are N,N′-bis[(pyridin-2-yl)methylidene]butane-1,4-diamine and N,N′-bis[(pyridin-2-yl)benzylidene]butane-1,4-diamine, respectively, have been prepared. The syntheses have been achieved by reaction of the respective metal perchlorate with the tetradentate Schiff bases, L1 and L2, in presence of thiocyanate (for 1 and 2) or azide (for 3 and 4). The complexes have been characterized by microanalytical, spectroscopic, single crystal X-ray diffraction and other physicochemical studies. Structural studies reveal that 14 are distorted octahedral geometries. The antibacterial activity of all the complexes and their constituent Schiff bases have been tested against Gram-positive and Gram-negative bacteria.  相似文献   

20.
Three new complexes [CuL(N3)2] (1), [CuL(SCN)2] (2), and [CoL(SCN)3] (3) (L?=?1,4,7-tribenzyl-1,4,7-triazacyclononane) have been synthesized and structurally characterized. Complex 1 crystallizes in monoclinic space group P2(1)/n with unit cell parameters a?=?14.105(7), b?=?8.999(5), c?=?21.603(11)?Å, β?=?100.470(7)°. While 2 crystallizes in triclinic space group P-1 with unit cell parameters a?=?9.6380(16), b?=?10.6993(18), c?=?15.798(3)?Å, α?=?106.636(3), γ?=?116.478(3)°. Complex 3 crystallizes in trigonal space group P–3c1 with unit cell parameters a?=?14.744(3), b?=?14.744(3), c?=?16.098(4)?Å, γ?=?120°. Elemental analysis, IR, UV-vis spectra of complexes 13 and ESR spectra of complexes 12 were also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号