首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation of the diamide ligand N,N-bis(2-carbamoylethyl)ethylenediamine (H2L) by Michael addition of ethylenediamine to acrylamide is described. The copper(II) complex [Cu(H2L)](ClO4)2 and the deprotonated complex [CuL]·H2O have been prepared and characterized as has the blue octahedral nickel(II) complex [Ni(H2L)](ClO4)2. The crystal structure of the carbonyl-oxygen-bonded copper(II) complex [Cu(H2L)] (ClO4)2 has been determined (R=5.5%). The stepwise protonation equilibria of the ligand have been studied by potentiometric titration, giving values of logK1= 8.71 and logK2=5.74 at 25°C and I=0.1moldm–3 (NaClO4). The interaction of copper(II) with the ligand (H2L/Cu(II)=1:1) can be fitted to the set of equilibria:With nickel(II), only two complexes, [Ni(H2L)]2+ and [NiL], occur and they have formation constants of log110=7.39 and log 11–2=–11.49. With palladium- (II) the system is similar to that with copper(II) with three complex species, 110, 11–1 and 11–2, with log 110=15.48, log 11–1=11.88 and log 11–2=7.32.  相似文献   

2.
The crystal structures of the four title clathrate compounds Cd(NH3)2Cd(CN)4 · 2C6H6,I, Cd(NH3)2Cd(CN)4 · 2C6H5NH2,II, Cd(NH2CH2CH2NH2)Cd(CN)4 · 2 C6H5NH2,III, and Cd(C6H5NH2)2Cd(CN)4 · 0.5C6H5NH2,IV, have been analyzed by single crystal X-ray diffraction methods. CompoundI crystallizes in the monoclinic space groupC2/c,a = 12.063(2),b = 12.174(2),c = 14.621(1) Å,β = 90.976(9)°,Z = 4,R = 0.042 for 2388 reflections;II: monoclinic C2/c,a = 12.1951(9),b = 12.078(1),c = 14.6921(7) Å,β = 93.436(5)°,Z = 4,R = 0.039 for 2374 reflections;III: monoclinicCc,a = 11.027(1),b = 12.0767(9),c = 15.837(1) Å,β = 92.059(9)°,Z = 4,R = 0.041 for 2883 reflections; andIV: monoclinicP21/n,a = 15.169(2),b = 16.019(2),c = 8.866(1) Å,β = 95.73(1)°,Z = 4,R = 0.052 for 3612 reflections. The three-dimensionalcatena-[diamminecadmium(II) tetra-μ-cyanocadmate(II)] hosts ofI andII are substantially isostructural to that of the already known Hofmann-Td-type Cd(NH3)2Hg(CN)4 · 2C6H6. The three-dimensional en-Td-typecatena-[catena-μ-ethylenediaminecadmium(II) tetra-μ-cyanocadmate(II)] host ofIII, reinforced by the catena-μ-en linking between the octahedral Cd atoms, accommodates the aniline as the guest with a monoclinic distortion from the tetragonal symmetry of the previously reported en-Td-type benzene clathrate. InIV dual behavior of aniline, one as the unidentate ligand in the three-dimensional host and the other as the guest in the cage-like cavity, has been demonstrated.  相似文献   

3.
We present a comprehensive study of the temperature dependence of the crystal structure using single-crystal X-ray diffraction and diffuse scattering, and electrical transport and magnetic properties as well as some optical properties at room temperature to elucidate the origin and the form of multiple ground states demonstrated in a previous study of the heat-capacity of the MMX chain compound, [Pt(II/III)(2)(n-PenCS(2))(4)I](∞). The present results confirm the presence of the two phase transitions, one reversible of first order at 207 K and the other nonreversible monotropic at 324 K, separating the low temperature (LT), room temperature (RT), and high temperature (HT) phases. The unit cell displays a 3-fold periodicity of -Pt-Pt-I- in the RT and HT phases because of the structural disorder which is exhibited by the dithiocarboxylato groups and the n-pentyl groups belonging to the central diplatinum unit. In addition, for the HT-phase all the dimers show this disorder. This compound undergoes a metal-semiconductor transition at T(M-S) = 235 K. The presence of diffuse streaks corresponding to 2-fold -Pt-Pt-I- periodicity in the HT and RT phases indicates dynamic valence ordering of the type -Pt(2+)-Pt(2+)-I(-)-Pt(3+)-Pt(3+)-I(-)-or-Pt(2+)-Pt(3+)-I(-)-Pt(3+)-Pt(2+)-I(-)-. For the LT-phase the diffuse scattering is condensed into clear Bragg diffraction peaks while keeping the 3-fold periodicity. This fact suggests further localization through dimerization of charges and spins confirming the diamagnetic state in the magnetic susceptibility and the low electrical conduction below 207 K. The present results are further discussed in relation to those of previous studies on the homologues, [Pt(II/III)(2)(RCS(2))(4)I](∞), R = methyl, ethyl, n-propyl, and n-butyl.  相似文献   

4.
The synthesis and structures of [Pb(DOTAM)](ClO4)2.4.5H2O (1) and [Hg(DOTAM)](ClO4)2.0.5CH3OH.1.5H2O (2) are reported, where DOTAM is 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane. Compound 1 is triclinic, space group P, a = 12.767(3) A, b = 13.528(2) A, c = 18.385(3) A, alpha = 101.45(2) degrees, beta = 93.32(2) degrees, gamma = 90.53(2) degrees, Z = 4, R = 0.0500. Compound 2 is monoclinic, space group Cc, a = 12.767(3) A, b = 13.528(2) A, c = 18.385(3) A, beta = 101.91(2) degrees, Z = 4, R = 0.0381. The Pb(II) ion in 1 has an average Pb-N = 2.63 A to four N-donors from the macrocyclic ring, and four O-donors (average Pb-O = 2.77 A) from the amide pendant donors of the macrocycle, with a water molecule placed with Pb-O = 3.52 A above the proposed site of the lone pair (Lp) on Pb. The Hg(II) in 2 appears to be only six-coordinate, with four Hg-N bond lengths averaging 2.44 A, and two Hg-O from pendant amide donors at 2.41 A. The other two amide donors appear to be noncoordinating, with Hg-O distances of 2.74 and 2.82 A. A water situated 3.52 A above the proposed site of the lone pair on Pb(II) in 1 is oriented in such a way that it might be thought to be forming a Pb-Lp.H-O-H hydrogen bond. It is concluded that that this is not an H-bond, but that the presence of the lone pair allows a closer approach of the hydrogens to Pb than would be true otherwise. The structural analogy in the VSEPR sense between Pb(II), which has the 5d(10)6s(2) outer electron structure, and the Hg(II) ion, which has the 5d10 structure, is examined. The tendency of Hg(II) toward linear coordination, with two short Hg-L bonds (L = ligand) at 180 degrees to each other, and other donor groups at roughly 90 degrees to this and at much longer bond distances, is paralleled by Pb(II). One of the short Hg-L bonds is replaced in the Pb(II) structures by the lone pair (Lp), which is opposite the short Pb-L bond, or in some cases 2-4 shorter Pb-L bonds.  相似文献   

5.
The tripodal tetraamine ligand N{(CH2)3NH2}{(CH2)2NH2}2 (pee), has been investigated as an asymmetrical tetraamine chelating agent for CoII, NiII, CuII, ZnII and CdII. The protonation constants for this ligand and the formation constants for its complexes have been determined potentiometrically in 0.1 M KCl at 25 °C. The successive protonation constants (log K n ) are: 10.22, 9.51, 8.78 and 1.60 (n = 1–4). One complex with formula M(pee)2+ (M = Co, Ni, Cu, Zn and Cd) is common to all five metal ions and the formation constant (log ML) is: 12.15, 14.17, 16.55, 13.35 or 9.74, respectively. In addition to the simple complexes, CoII, CuII and ZnII also give hydroxo complexes, and CuII and NiII give complexes with monoprotonated pee. [Zn(pee)](ClO4)2 and [Cd(pee)Cl](ClO4) complexes were isolated and are believed to have tetrahedral and trigonal-bipyramidal structures, respectively.  相似文献   

6.
《Polyhedron》1999,18(23):2987-2994
Five complexes of formulae Cd(HBT)X3·H2O, Hg2X5(HBT) (X=Cl, Br), and Pt(HBT)(NO2)3 were prepared by reacting CdX2, HgX2 and K2Pt(NO2)4 with 2-(α-hydroxybenzyl)thiamine (HBT), an active intermediate of thiamine catalysis, and their crystal structures were determined by X-ray diffraction. The metal ion binds to the N(1′) site of the pyrimidine ring in each case, despite the different shapes and sizes of metal coordination units; a tetrahedral unit in the cadmium complexes, a double-metal unit consisting of two tetrahedral Hg(II) ions in the mercury complexes and a square-planar unit in the platinum complex. The HBT ligands in these complexes adopt the S conformation, as usually observed in C(2)-substituted derivatives of thiamine, with average torsion angles ϕT being ±99° and ϕP being ±175°. A ‘two-point’ anion-bridge between the amino group of the pyrimidine ring and the cationic thiazolium ring of the same molecule is found in all the structures, being of the form N(4′α)–H…X1–M–X2…thiazolium-ring (M=metal ion), which is one of the factors that affect the S conformation. Stacking interactions between the pyrimidine and phenyl rings play an important role in the molecular conformation and crystal packing. The intramolecular close contact between the oxygen of the C(2)-substituent and the sulfur of the thiazolium ring is also a common feature to these complexes, which gives the mechanistic implications.  相似文献   

7.
8.
A comparison of a differential pulse polarographic with a phase sensitive alternating current polarographic study of the Cd-Cys-Gly and Cd-PC2 systems [PC2 being a phytochelatin of general structure (γ-Glu-Cys) n -Gly, with n = 2] has been performed. The chemometric multivariate curve resolution method with alternating least squares was applied in the experimental data analysis. The results obtained by both polarographic techniques have made it possible to find out the formation sequences of the complexes and their final stoichiometries. The alternating current polarograms compared with the differential pulse ones show some differences (a new signal and an important shift of peak potentials), which anyway are consistent with some of the conclusions obtained by differential pulse polarography. This fact implies that although the alternating current polarography results need some corrections before data treatment, they provide extra information that complements the conclusions achieved by differential pulse polarography. Figure Voltammograms at ACP(−10°), ACP(−65°) and corrected ACP during the titration of a 10−5 mol L−1 Cd(II) solution with PC2 at pH 8.5 in 0.05 L−1 Tris.  相似文献   

9.
The dependence of the properties of mixed ligand [Ni(II)(2)L(μ-O(2)CR)](+) complexes (where L(2-) represents a 24-membered macrocyclic hexaamine-dithiophenolato ligand) on the basicity of the carboxylato coligands has been examined. For this purpose 19 different [Ni(II)(2)L(μ-O(2)CR)](+) complexes (2-20) incorporating carboxylates with pK(b) values in the range 9 to 14 have been prepared by the reaction of [Ni(II)(2)L(μ-Cl)](+) (1) and the respective sodium or triethylammonium carboxylates. The resulting carboxylato complexes, isolated as ClO(4)(-) or BPh(4)(-) salts, have been fully characterized by elemental analyses, IR, UV/vis spectroscopy, and X-ray crystallography. The possibility of accessing the [Ni(II)(2)L(μ-O(2)CR)](+) complexes by carboxylate exchange reactions has also been examined. The main findings are as follows: (i) Substitution reactions between 1 and NaO(2)CR are not affected by the basicity or the steric hindrance of the carboxylate. (ii) Complexes 2-20 form an isostructural series of bisoctahedral [Ni(II)(2)L(μ-O(2)CR)](+) compounds with a N(3)Ni(μ-SR)(2)(μ-O(2)CR)NiN(3) core. (iii) They are readily identified by their ν(as)(CO) and ν(s)(CO) stretching vibration bands in the ranges 1684-1576 cm(-1) and 1428-1348 cm(-1), respectively. (iv) The spin-allowed (3)A(2g) → (3)T(2g) (ν(1)) transition of the NiOS(2)N(3) chromophore is steadily red-shifted by about 7.5 nm per pK(b) unit with increasing pK(b) of the carboxylate ion. (v) The less basic the carboxylate ion, the more stable the complex. The stability difference across the series, estimated from the difference of the individual ligand field stabilization energies (LFSE), amounts to about 4.2 kJ/mol [Δ(LFSE)(2,18)]. (vi) The "second-sphere stabilization" of the nickel complexes is not reflected in the electronic absorption spectra, as these forces are aligned perpendicularly to the Ni-O bonds. (vii) Coordination of a basic carboxylate donor to the [Ni(II)(2)L](2+) fragment weakens its Ni-N and Ni-S bonds. This bond weakening is reflected in small but significant bond length changes. (viii) The [Ni(II)(2)L(μ-O(2)CR)](+) complexes are relatively inert to carboxylate exchange reactions, except for the formato complex [Ni(II)(2)L(μ-O(2)CH)](+) (8), which reacts with both more and less basic carboxylato ligands.  相似文献   

10.
11.
Paramagnetic Cu(HL)Cl2 · 0.25CHCl3 (I) and Cu(HL)C12 · 0.25CH2C12 (II), where HL is the optically active morpholino oxime obtained from the terpenoid caryophyllene, were synthesized. The crystals of Cu(HL)Cl2 · CHCl3 (III) were isolated. According to X-ray diffraction data, the crystals of III are composed of acentric mononuclear complex molecules Cu(HL)Cl2 and solvate molecules CHCl3. In the complex molecules, the Cu ion coordinates two N atoms of the bidentate chelating ligand HL and two C1 atoms at the vertices of a distorted tetrahedron. The translationally identical molecules of the complex combined by H-bonds form chains along the axis x.  相似文献   

12.

The [Cd(N(CH3)3)2Ni(CN)4] complex crystallizes in a tetragonal system, space group 14/mmm with two formula units per unit cell (XRD, Rigaku AFC-6A diffractometer, λ MoKα, ω/2θ scan mode, θmax = 38?, 635 observed unique reflections, 53 parameters, R = 0.027). The structure consists of parallel polymer layers made up of coordinated metal atoms and bridging cyanides. The octahedral environment of Cd(II) involves six nitrogen atoms of the four cyanide groups in the layer plane (2.323(4) Å) and the two trimethylamine ligands in the transposition (2.42(1) Å). The square-planar environment of Ni(II) consists of four carbon atoms of the cyanide ligands (1.857(3) Å). The layers are packed according to van der Waals type; the “hollows” near the nickel atoms are filled by the “hills” of the trimethylamino groups from the neighboring layer (the interlayer distance is 7 Å). The spatial complementarity of the layers leads to close packing of the complex and explains the lack of a clathrate-forming ability in the latter. The trimethylamine ligands here play the same role as guest molecules in Hofmann clathrates, stabilizing the planar polymer structure of the complex. This phenomenon is called contact self-stabilization.

  相似文献   

13.
New complexes of general empirical formula, [M(NS)2] · nCHCl3 (M = NiII, CuII, PdII or PtII; NS = anionic form of the thiophene-2-aldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate; n = 0, 1) have been synthesized and characterized by physico-chemical techniques. Magnetic and spectroscopic evidence support a square-planar structure for these complexes. The crystal structures of the [Ni(tasbz)2] and [Cu(tasbz)2] · CHCl3 complexes (tasbz = anionic form of the thiophene-2-aldehyde Schiff base of S-benzyldithiocarbazate) have been determined by X-ray diffraction. Both complexes have a trans-planar structure in which the two Schiff base ligands are coordinated to the metal(II) ion as uninegatively charged bidentate ligands via the thiolate sulfur and the azomethine nitrogen atoms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The results of the study of ceramic materials obtained by partial substitution of MgO in the 2MgO×2Al2O3×5SiO2 (cordierite) with transition metal oxides FeO, MnO, CuO and ZnO, are presented The modification of the magnesium-aluminosilicate system led to intensification of the phase formation and improved the ceramics properties. In the systems modified with the oxides basic by their chemical nature (MnO, FeO) solid solutions formed Mg2−y R y Al4Si5O18 (0.5 < y <1.5), which, according to X-ray analysis, are close to high-and low-temperature modifications of cordierite, where R is Mn(II) or Fe(II). The qualitative phase composition of the materials modified with oxides of amphoteric nature (ZnO, CuO) is characterized by the presence of silicate and aluminate solid solutions Mg1−x R x Al2O4 (0.25 < x < 0.75), where R is Cu(II) or Zn. The activation energies of the studied processes and standard heats of formation of products were determined.  相似文献   

15.
The interaction of platinum(IV) and palladium(II) chloro complexes with the γ-Al2O3 surface in a wide range of surface metal concentrations is reported. Varying the concentration of the adsorbed metal complex on the alumina surface causes changes both in the proportions of weakly and strongly bound desorbable platinum species and in the proportions of desorbable (ion-exchanged) and nondesorbable (coordinatively bound) complexes. The adsorbed palladium complexes are more uniform in chemical composition and binding strength and consist largely of desorbable species removable from the surface by competitive sorption of anions. The absolute amount of coordinatively bound platinum and palladium species increases as the total metal content of the sample is raised to 1.0% and remains almost invariable at higher metal contents.  相似文献   

16.
The thermodynamics of vaporization of Ni(saloph), Cu(saloph), Zn(saloph), and Zn(salen) complexes are studied by Knudsen effusion method with mass spectrometric control of the vapor composition. It is noted that in the mass spectra of Zn(saloph) and Zn(salen), there are low-intensity peaks corresponding to ions of dimer. The effect of the nature of a metal and a ligand on the behavior of fragmentation of the complexes during their ionization with electrons is discussed. The enthalpies of sublimation, ΔH s (T), are calculated by second law of thermodynamics: Ni(saloph) (502–578 K), 163 ± 1 kJ/mol; Cu(saloph) (475–550 K), 162 ± 1 kJ/mol; Zn(saloph) (571–637 K), 176 ± 4 kJ/mol; Zn(salen) (568–634 K), 169 ± 2 kJ/mol.  相似文献   

17.
Herein, we studied the experimental and theoretical foundations of the process of zinc(II) and cadmium(II) complexation with 2-hydroxido-nonahydrido-closo-decaborate(2−) anion [2-B10H9(OH)]2− in the presence of azaheterocyclic ligands L (L=2,2′-bipyridyl (bipy), 1,10-phenanthroline (phen), and 2,2′-bipyridylamine (bpa)), which can be used as model system for obtaining complexes with the required composition and structure. The first examples of mixed-ligand Zn(II) and Cd(II) complexes with [2-B10H9(OH)]2− coordinated by the metal atom were isolated selectively. The structures of zinc(II) complexes [Zn(bipy)2(2-B10H9(OH)-κ2H1,O)] ⋅ 2CH3CN ( 1 ⋅ 2CH3CN) and [Zn(phen)2(2-B10H9(OH)-κ2H9,O)] ⋅ 2CH3CN ( 2 ⋅ 2CH3CN), as well as two cadmium(II) bond isomers [Cd(bipy)2(2-B10H9(OH)-κ2H1,O)] ( 4 a ) and [Cd(bipy)2(2-B10H9(OH)-κ2H9,H10)] ( 4 b ) bound into a dimeric pair in the complex [Cd(bipy)2(2-B10H9(OH))] ( 4 ), and cadmium(II) complex [Cd(bpa)2(2-B10H9(OH)-κ2H7,H10)] ( 7 ) were solved by single-crystal X-ray diffraction (XRD). Density functional theory (DFT) calculations show that for cadmium(II) the formation of both multicenter BH−Cd−HB and BO(H)−Cd−HB bonds is equally probable. The affinity of zinc(II) for oxygen leads to preferential formation of complexes via BO(H)−Zn−HB bonds than BH−Zn−HB bonds. The M−B(H) bonding was found to be presumably electrostatic in nature, which could be the reason of topological isomerism of zinc(II) and cadmium(II) decaborates.  相似文献   

18.
The structure of the hexanuclear copper(II) β-diketonate complex with gfa (hexafluoroacetylacetone) and dpm (dipivalylmethanate) ligands was studied by low-temperature (T = 100 K) X-ray diffraction. Crystal data for Cu6(gfa)4(dpm)4(OH)4 [C64H84Cu6F24O20]: a = 28.2364(7) Å, b = 12.8072(3) Å, c = 24.7199(7) Å, β= 115.900(1)°, V = 8041.5(4) Å3, space group C2/m, Z = 4, d calc 1.661 g/cm3. The coordination polyhedra of the copper atoms — squares and octahedra — are formed by the oxygen atoms of the gfa and dpm ligands and groups. In all cases, the Cu-O distances vary from 1.89 Å to 2.13 Å. The complexes follow the sites of the rhombohedral sublattice with the parameters a c ≈ 14.4 Å and a c ≈ 61.5°.  相似文献   

19.
A series of mono- and heterodinuclear macro-acyclic complexes of [ZnLCu(II)]2+ and [ZnLNi(II)]2+ were synthesized by a stepwise procedure. The phenol-based macro-acyclic dicompartmental ligands (L2?) possess contagious hexadentate (N4O2) and tetradentate (N2O2) coordination sites, where in the mononuclear complexes [ZnL(H+)2]2+ the latter site containing two alkyl-imine donor groups (ethyl or isopropyl) is attached to the azomethine moieties. The alkyl group(s) is eliminated upon introduction of the second metal (II) ion into N2O2 coordination site as a result of steric crowding of the alkyl groups along with the lack of flexibility associated with the imine groups. When the second metal ion is Cu(II) and R = isopropyl, the both of them are eliminated but when R = Et only one ethyl group is removed. However, in case of Ni(II) as the second metal ion, the both alkyl groups are eliminated regardless of the nature of the alkyl group. The origins of the structural variations are discussed. The prepared complexes were characterized by elemental analysis, molar conductance measurements, X-ray crystallography, IR, NMR and UV–Vis spectroscopies.  相似文献   

20.
Mono- and binuclear copper(II) complexes with atenolol (HAt) can be obtained, depending on the reaction conditions. The mononuclear violet complex cation has the general formula Cu(HAt)4 2+ with an elongated octahedral geometry. The two ligands in the equatorial plane are bound in a bidentate fashion through the hydroxyl oxygen and amino nitrogen, while the other two atenolol molecules in axial position are coordinated in a monodentate way. The binuclear green complex Cu2At2Cl2, is neutral, where atenolol acts as a bidentate (O, NH) bridging ligand. The bridge between the two Cu atoms is realized by the deprotonated oxygen of the alcohol group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号