首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The preparation of the potassium salt of hexathiocyanate Re(IV) as a pure and crystalline solid is described. The crystal structure for [{K(H2O)2}2{Re(NCS)6}] (P21/c, a = 8.29132(8) Å, b = 15.0296(2) Å, c = 8.5249(1) Å, β = 90.885(1)°, V = 1062.21(2) Å3) revealed the formation of a 3-D coordination polymer based on K-S linkages. This organization leads to rather short intermolecular S···S contacts. The magnetic behavior for the compound is characterized by substantial antiferromagnetic interactions (with Curie-Weiss parameters C = 1.93 cm3mol−1 and θ = −171 K) that in turn lead to a weak ferromagnet with TC = 13 K.  相似文献   

2.
A new iron phosphate (NH4)4Fe3(OH)2F2[H3(PO4)4] has been synthesized hydrothermally at HF concentrations from 0.5 to 1.2 mL. Single-crystal X-ray diffraction analysis reveals its three-dimensional open-framework structure (monoclinic, space group P21/n (No. 14), a=6.2614(13) Å, b=9.844(2) Å, c=14.271(3) Å, β=92.11(1)°, V=879.0(3) Å3). This structure is built from isolated linear trimers of corner-sharing Fe(III) octahedra, which are linked by (PO4) groups to form ten-membered-ring channels along [1 0 0]. This isolated, linear trimer of corner-sharing Fe(III) octahedra, [(FeO4)3(OH)2F2], is new and adds to the diverse linkages of Fe polyhedra as secondary building units in iron phosphates. The trivalent iron at octahedral sites for the title compound has been confirmed by synchrotron Fe K-edge XANES spectra and magnetic measurements. Magnetic measurements also show that this compound exhibit a strong antiferromagnetic exchange below TN=17 K, consistent with superexchange interactions expected for the linear trimer of ferric octahedra with the Fe-F-Fe angle of 132.5°.  相似文献   

3.
[Ni(ND3)6](ClO4)2 has three solid phases between 100 and 300 K. The phase transitions temperatures at heating (TC1h=164.1 K and TC2h=145.1 K) are shifted, as compared to the non-deuterated compound, towards the lower temperature of ca. 8 and 5 K, respectively. The ClO4 anions perform fast, picosecond, isotropic reorientation with the activation energy of 6.6 kJ mol−1, which abruptly slow down at TC1c phase transition, during sample cooling. The ND3 ligands perform fast uniaxial reorientation around the Ni-N bond in all three detected phases, with the effective activation energy of 2.9 kJ mol−1. The reorientational motion of ND3 is only slightly distorted at the TC1 phase transition due to the dynamical orientational order-disorder process of anions. The low value of the activation energy for the ND3 reorientation suggests that this reorientation undergoes the translation-rotation coupling, which makes the barrier to the rotation of the ammonia ligands not constant but fluctuating. The phase polymorphism and the dynamics of the molecular reorientations of the title compound are similar but not quite identical with these of the [Ni(NH3)6](ClO4)2.  相似文献   

4.
Toward the realization of a ligand-driven light-induced spin change (LD-LISC) around room temperature, we have investigated the spin-crossover phenomenon in [Fe(stpy)4(X)2] (stpy = styrylpyridine, X = NCS, NCBH3) under high pressure. The spin transition temperature increases from 110 to 220 K with increasing applied pressure up to 0.75 GPa for [Fe(trans-stpy)4(NCS)2], while [Fe(cis-stpy)4(NCS)2] shows the high-spin state in the temperature region between 2 and 300 K even at 0.75 GPa. In the case of X = NCBH3, due to the stronger ligand field of NCBH3, the spin transition temperature increases from 240 to 360 K with increasing applied pressure up to 0.50 GPa for [Fe(trans-stpy)4(NCBH3)2]. In the case of [Fe(cis-stpy)4(NCBH3)2], the spin state is the high-spin state in the temperature region between 2 and 300 K. However, the spin transition appears at 125 K under 0.5 GPa and the transition temperature increases with increasing applied pressure. In this way, we have decided the applied pressure region of 0.65-1.09 GPa where [Fe(stpy)4(NCBH3)2] undergoes LD-LISC at room temperature.  相似文献   

5.
The interaction of diethyl (pyridyn-2-ylmethyl)phosphonate (2-pmpe) with Cu(NO3)2 · 6H2O leads to a partial hydrolysis of the starting ligand and formation of the compound of the formula Cu2(2-mpmpe)2(H2O)2(NO3)2, where 2-mpmpe = monoethyl (pyridyn-2-ylmethyl)phosphonate. The crystal and molecular structure of a copper(II) compound was determined by single X-ray diffraction method. Its structure consists of five-coordinated in distorted square planar geometry (CuNO4 chromophore) copper(II) ions doubly bridged by OPO from phosphonate. The Cu?Cu distance is 4.69 Å. The crystal packing is determined by the interdinuclear hydrogen bond system, which leads to a three-dimensional (3D) H-bonds network. The compound was characterized by infrared, ligand field, EPR spectroscopy, and magnetic studies. The magnetic properties of the title compound investigated over the 1.8–300 K, revealed the occurrence of a weak ferromagnetic coupling through phosphonate bridge (J = 1.86 cm−1) and interdimer superexchange coupling through H-bond network (zJ′ = −0.17 cm−1). Spectroscopic and magnetic properties are presented in the light of crystal structure.  相似文献   

6.
A novel two-dimensional network bimetallic Fe Au spin crossover coordination polymer based on 3-phenylpyridine-coordinated iron centers and linear gold cyanide bridges {Fe(3-phenylpyridine)2[Au(CN)2]2}n (1), has been synthesized. The compound is characterized by elemental analysis, IR, single-crystal X-ray analysis at 300 and 90 K and magnetic measurements. The FeII ions in 1 have octahedral FeIIN6 coordination geometries, which are linked by [Au(CN)2] units at the equatorial plane to form a polymeric 2D sheet architecture. The two pyridine rings coordinate in axial position. Variable-temperature (2-300 K) magnetic susceptibility measurements of 1 were performed to determine the spin transition behavior. SQUID data show that high and low spin states exist in a 1:1 ratio at 90 K. However, only one kind of FeII atom is apparent crystallographically at 90 K, indicating that the high and low spin sites are disordered in the polymeric 2D framework.  相似文献   

7.
A complex of holmium perchlorate coordinated with l-glutamic acid, [Ho2(l-Glu)2(H2O)8](ClO4)4·H2O, was prepared with a purity of 98.96%. The compound was characterized by chemical, elemental and thermal analysis. Heat capacities of the compound were determined by automated adiabatic calorimetry from 78 to 370 K. The dehydration temperature is 350 K. The dehydration enthalpy and entropy are 16.34 kJ mol−1 and 16.67 J K−1 mol−1, respectively. The standard enthalpy of formation is −6474.6 kJ mol−1 from reaction calorimetry at 298.15 K.  相似文献   

8.
Here we report the synthesis and characterization by X-ray diffraction, FTIR, UV-Vis and EPR spectroscopies, and the magnetic measurements of two new compounds: [Mn(NCS)2(bpe)2(H2O)2] (1) and [Fe(NCS)2(bpe)2(H2O)2] (2) (bpe = 1,2-bis(4-pyridyl)ethylene). Single-crystal structure analyses reveals discrete octahedral metal units that are assembled into 2D sheets through O-Hw?N(bpe) and O-Hw?S(thiocyanate) hydrogen bonds. The intermetallic M?M distances are 6.90 and 6.87 Å for 1 and 2, respectively. Supramolecular architectures are obtained by connections through H-bonds. Slight interactions are observed for compound 2.  相似文献   

9.
The synthesis, crystal structure and magnetic properties of the cyano-bridged complex [{Cu(cyclam)}3{Fe(CN)6}2] · 6H2O are reported. Its structure is made up of centrosymmetric S-shaped pentanuclear [{Cu(cyclam}3{Fe(CN)6)}2] units, in which three [Cu(cyclam)]2+ units are alternatively bridged by two trans-CN groups of [Fe(CN)6]3− anions and water molecules. The pentanuclear Fe2Cu3 units are held together by two complementary and very weak Fe–CN?Cu1 bonds, forming a rope-ladder chain along the c axis. The compound exhibits a ferromagnetic interaction between the Cu(II) and Fe(III) ions as a consequence of the orthogonality of their magnetic orbitals of σ and π nature, respectively. The magnetic data were fitted to the calculated magnetic susceptibility equation for a pentanuclear model, leading to the following magnetic parameters: J1 = 9.0(3) cm−1, J2 = 3.8(4) cm−1, g = 2.2, θ = −1.2 K. These results show that the interactions through the long Cu–N axial bonds are not so weak as is usually assumed.  相似文献   

10.
The synthesis, crystal structure and magnetic properties are reported for the new bimetallic compound {(CuL1)[Co(NCS)4]} where L1 = N-rac-5,12-dimethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. The complex forms a one-dimensional zig-zag coordination polymer along the crystallographic c axis, with Co(II) and Cu(II) ions connected via thiocyanate bridges. The Co(II) centre in the [Co(NCS)4] fragment approximates a distorted tetrahedral symmetry. The Cu(II) geometry is a distorted tetragonal bipyramid with the apical position occupied by the bridging thiocyanate ligand and the basal ones by the four nitrogen atoms from the macrocyclic ring. The polymer chain nearest Cu(1)?Co(1) distances are 6.4152(9) and 6.0988(9) Å and the nearest Cu(1)?Co(1) interchain distances are 6.8609(9), 6.9628(9) and 6.0336(10) Å. The magnetization measurements for the examined compound have been carried out over the range 1.8–300 K. This data suggest ferromagnetic interactions through the thiocyanate bridge.  相似文献   

11.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

12.
Thermal properties and thermal decompositions of [NEt4]2[M(dmit)2] (M = Ni(II), Pd(II), dmit = 1,3-dithiole-2-thione-4,5-dithiolate) have been studied by thermogravimetry (TG). The TG analysis has shown that the complexes are thermally stable up to 460 K and the decomposition of the complexes occurs in three consecutive stages up to 873 K. A thermal stability scale for [M(dmit)2]n anions was based on the thermal properties. Kinetics parameters, such as activation energy, Ea, and kinetic apparent pre-exponential factor, ln Aapp, have been calculated from the thermogravimetric data at heating rates of 10, 15, 20 and 25 K/min involving differential (Friedman's equation) and integral (Flynn-Wall-Ozawa's equation) methods.  相似文献   

13.
A new dinuclear compound, [Cu2(bpdo)2Br4], (in which bpdo = 2,2′-Bipyridine-1,1′-dioxide), has been synthesized and fully characterized, including the X-ray and the magnetic susceptibility. Each copper(II) ion in the dinuclear compound has a distorted square pyramidal geometry with the basal plane formed by two oxygen atoms of two ligand molecules which are bridging between the Cu ions with Cu–O distances of 2.021(2) and 2.039(2) Å and two bromide atoms with Cu–Br distances of 2.3577(6) and 2.3665(7) Å. The fifth position is occupied by a non bridging oxygen atom of a ligand with a Cu–O distance of 2.197(2) Å. The distance between the Cu ions is 3.334 Å, while the Cu–O–Cu angle is 110.37(9)°. The magnetic susceptibility measurements (from 5 to 350 K) agree with a very strong antiferromagnetic interaction with a large singlet–triplet splitting (J) of −905 cm−1. At high T (above 250 K) a triplet powder EPR is observed.  相似文献   

14.
Ytterbium(III) tetraaquatris(tetraoxorhenate(VII)), Yb(ReO4)3(H2O)4, was prepared by the reaction of Yb2O3 with concentrated HReO4 at room temperature. The colorless compound crystallizes in the monoclinic space group P21/n (No. 14) with four formula units per unit cell (a=730.5(1) pm, b=1484.1(5) pm, c=1311.7(2) pm, β=93.69(1)). The main feature of the crystal structure is the formation of chains 1[Yb(H2O)4(ReO4)2(ReO4)2/2] running along [100]. This arrangement shows distorted cubic antiprisms of [Yb(H2O)4(ReO4)2(ReO4)2/2] interconnected via the ReO4 ligands. The chains are held together in the solid by hydrogen bonding. The compound is paramagnetic and follows the Curie-Weiss law with a magnetic moment of 4.0 μB at room temperature and θ=−42 K. It loses hydration water in two steps at temperatures below 400 K; decomposition begins at 850 K, forming Yb2O3(Re2O7)2 and is complete at 1350 K leading to Yb2O3 as final product.  相似文献   

15.
New bimetallic complex [Cp2ZrH2 · ClAlEt2]2 (1) was synthesized, and its reactivity in hydrometallation reaction with the following alkenes was studied: hept-1-ene, okt-1-ene, α-methylstyrene, (1S)-β-pinene, (+)-camphene. Complex 1 shows the highest reactivity among the other known Al,Zr-bimetallic complexes: [Cp2ZrH2 · ClAlBui2]2 (2), [Cp2ZrH2 · AlEt3]2 (3), [Cp2ZrH2 · AlBui3]2 (4) and [Cp2ZrH2 · HAlBui2] (5) as well as organoaluminium compounds (OAC): iBu2AlH, iBu3Al and iBu2AlCl in presence of Zr catalysts. Chlorine containing complexes 1 and 2 appear to be more effective in alkene hydrometallation, and relative hydrometallation rates are (1S)-β-pinene ? (+)-camphene < α-methylstyrene < oct-1-ene < hept-1-ene. Hydrometallation of (1S)-β-pinene and its subsequent oxidation with I2 run with high diastereoselectivity and yield trans-myrtanol. However, the diastereoselectivity of (+)-camphene hydrometallation is less than that for (1S)-β-pinene, and the reaction gives predominately endo-camphanol.  相似文献   

16.
Single crystals of [Cu(men)2(BF4)2] (men = N-methyl-1,2-diaminoethane) (1) were isolated from an aqueous-ethanolic system Cu2+-men-BF4. The crystal structure of 1 consists of [Cu(men)2(BF4)2] molecules. Copper ion exhibits usual distorted octahedral coordination; there are two coordinated men ligands in the equatorial plane with Cu-N bonds of 2.0451(12) and 2.0035(12) Å, while the axial positions are occupied by fluorine atoms from BF4 anions with Cu-F bond of 2.5091(11) Å. The packing of the [Cu(men)2(BF4)2] molecules is governed by N-H?F type hydrogen bonds. The measured ESR spectrum corroborated the presence of Jahn-Teller anisotropy of Cu(II) with g|| = 2.20 and g = 2.06. The magnetic studies in the temperature range 300-2 K reveal that 1 follows the Curie-Weiss law with parameters = 2.1612(1) and θ = −0.233(1) K suggesting the presence of weak antiferomagnetic interactions.  相似文献   

17.
p-Tolyl mercury thiocyanate and α-naphthyl mercury thiocyanate react with Co(NCS)22py and form a bimetallic pink compound of formula (py)2(SCN)2Co(NCS)2Hg2R2 (R = p-tolyl and α-naphthyl group). On heating this compound in vacuum a blue compound (SCN)2Co(NCS)2Hg2R2 is formed. Nickel analogues (SCN)2Ni(NCS)2Hg2R2 are formed by direct reaction of p-tolyl or α-naphthyl mercury thiocyanate with nickel thiocyanate. (SCN)2Co(NCS)2Hg2R2 and (SCN)2Ni(NCS)2Hg2R2 act as Lewis acids and form complexes with bases. The Lewis acids and their complexes with various bases have been characterized by elemental analyses, molar conductance, molecular weight, magnetic moment, infrared and electronic spectral studies. These studies reveal that both the Lewis acids are monomers. In (SCN)2Co(NCS)2Hg2R2 the CO(II) has tetrahedral geometry, where as in (SCN)2Ni(NCS)2Hg2R2 the Ni(II) has octahedral geometry through elongated axial bondings with SCN-groups of other molecules. Thiocyanate bridging of the type R-Hg-SCN-M [M = Co(II), Ni(II)] is present in the compounds. Pyridine and dimethylsulphoxide form adducts with these compounds by coordinating at Co(II) or Ni(II). The thiocyanate bridge is retained in these complexes. 2-2′bipyridyl ruptures the thiocyanate bridging in both the Lewis acids and forms cationic-anionic complexes of the type [M(L-L)3][RHg(SCN)2]2. In both the type of complexes Co(II) and Ni(II) possess octahedral environment. The “softness” values have been used in a novel manner in proposing the structure of the complexes.  相似文献   

18.
The combined use of di-2-pyridyl ketone [(py)2CO] and azides (N3) in nickel(II) and cobalt(II) pivalate chemistry has afforded complexes [Ni9(N3)2(O2CCMe3)8{(py)2CO2}4] (1) and [Co9(N3)2(O2CCMe3)8{(py)2CO2}4] (2), where (py)2CO22− is the gem-diolate(−2) form of (py)2CO. The complexes are isostructural and crystallize in the monoclinic P21/c space group. Their molecular structures consist of nine metal(II) ions, eight of which are arranged as two parallel squares flanking the ninth. DC magnetic susceptometry on powdered samples of 1 (1-p) reveal an overall antiferromagnetic behavior, leading to an S = 0 ground state. AC susceptometry reveals out-of-phase signals between 10 and 27 K, and ZFC and FC experiments show a divergence of the two curves below ∼27 K. Magnetization-decay and field-sweep experiments verify the relaxation behavior of the sample. Samples of the complex arising from carefully washed single crystals (1-cr) reveal a similar DC behavior, without however the appearance of cusps in the χΜΤ versus T curves, and no relaxation. The relaxation behavior has been assigned to NiO impurities. The results illustrate the extreme care that should be taken when examining the magnetic properties of apparently analytically pure materials obtained under heating. Complex 2 exhibits an overall antiferromagnetic behavior, without observation of any relaxation phenomena.  相似文献   

19.
The organo-templated iron(III) borophosphate (C3H12N2)FeIII 6(H2O)4[B4P8O32(OH)8] was prepared under mild hydrothermal conditions (at 443 K) and the crystal structure was determined from single crystal X-ray data at 295 K (monoclinic, P21/c (No. 14), a=5.014(2) Å, b=9.309(2) Å, c=20.923(7) Å, β=110.29(2)°, V=915.9(5) Å3, Z=2, R1=0.049, wR2=0.107 for all data, 2234 observed reflections with I>2σ(I)). The title compound contains a complex inorganic framework of borophosphate trimers [BP2O8(OH)2]5− together with FeO4(OH)(H2O)- and FeO4(OH)2-octahedra forming channels with ten-membered ring apertures in which the diaminopropane cations are located. The magnetization measurements confirm the Fe(III)-state and show an antiferromagnetic ordering at TN≈14.0(1) K.  相似文献   

20.
The heat capacity of Cr(C5H7O2)3 has been measured by the adiabatic method within the temperature range 5-320 K. An anomaly with a maximum at ∼60 K has been discovered which points to the phase transformation of the compound. Anomalous contributions to entropy and enthalpy have been revealed. The thermodynamic functions (entropy, enthalpy and reduced Gibbs energy) at 298.15 K have been calculated using the obtained experimental heat capacity data. The Raman spectra have been measured in the frequency range 60-400 cm−1 and in the temperature range 5-220 K. It has been discovered that a new line (109 cm−1) appears at ∼60 K. The nature of these peculiarities in heat capacity and in Raman spectra is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号