首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In the on-going evolution of GaAs quantum well infrared photodetectors (QWIPs) we have developed a four band, 640 × 512, 23 μm × 23 μm pixel array which we have subsequently integrated with a linear variable etalon (LVE) filter providing over 200 spectral bands across the 4–15.4 μm wavelength region. This effort was a collaboration between NASA’s Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL) and the Army Research Laboratory (ARL) sponsored by the Earth Science Technology Office of NASA. The QWIP array was fabricated by graded molecular beam epitaxial (MBE) growth that was specifically tailored to yield four distinct bands (FWHM): Band 1; 4.5–5.7 μm, Band 2; 8.5–10 μm, Band 3; 10–12 μm and Band 4; 13.3–14.8 μm. Each band occupies a swath that comprises 128 × 640 elements. The addition of the LVE (which is placed directly over the array) further divides the four “broad” bands into 209 separate spectral bands ranging in width from 0.02 μm at 5 μm to 0.05 μm at 15 μm. The detector is cooled by a mechanical cryocooler to 46 K. The camera system is a fully reflective, f/4.2, 3-mirror system with a 21° × 25° field of view. The project goals were: (1) develop the 4 band GaAs QWIP array; (2) develop the LVE and; (3) implement a mechanical cryocooler. This paper will describe the efforts and results of this undertaking with emphasis on the overall system characteristics.  相似文献   

2.
We have investigated the specular reflectance and transmittance of polished, high-resistivity single-crystal Si in the spectral range from 2 to 5 μm. Measurements were performed with a nearly collimated (≈0.7° divergence) beam at angles of incidence from 12° to 80°, and a spectral resolution of 16 cm−1. The measured values agree with the expected values obtained from the published index of refraction of Si to within 0.002. This represents a substantial reduction in experimental uncertainty compared to previous results and demonstrates the usefulness of Si as a standard material for infrared reflectance and transmittance.  相似文献   

3.
The problem of retrieval of size and refractive index of a spherical particle by angular dependence of scattered light in scanning flow cytometry is considered. For its solution, the high-order neural networks are used. We restricted the range of angles available for measurement from 10° to 60°. The retrieval errors of characteristics of nonabsorbing particles were investigated at the ranges of the radius and relative refractive index 0.6–10.6 μm, and 1.02–1.38, respectively.  相似文献   

4.
Measurements are presented of the angular distribution of four wavelengths of light scattered by a one-dimensional random rough surface, whose probability density function is Gaussian with a standard deviation σ=1.22±0.02 μm and whose lateral correlation function is also Gaussian with 1/e width τ=3.17±0.07 μm. The wavelengths used are 0.63, 1.15, 3.39 and 10.6 μm. The surface is used in two forms: coated with gold and as an almost lossless dielectric. The results are compared to those predicted by a double scattering form of the Kirchhoff formulation. Agreement is good at small angles of incidence but less good at larger angles of incidence.  相似文献   

5.
We compare measurements of the phase-angle dependencies of the intensity and degree of linear polarization of particles in air and particulate surfaces. The samples were measured at two spectral bands centered near 0.63 and 0.45 μm. The surfaces were measured with the new photometer/polarimeter at the Astronomical Institute of Kharkov National University. The scattering measurements of the particles in air were carried out with the equipment currently located at the University of Amsterdam. We study a suite of samples of natural mineral particles of different sizes all in the micrometer range, i.e. comparable with the wavelengths. The samples are characterized by a variety of particle shapes and albedos. The samples have been studied in several works and in this paper we include new SEM microphotographs of particles and spectra of powders in a wide spectral range, 0.3–50 μm, using the RELAB equipment of Brown University. We made measurements of particulate surfaces in a phase-angle range, 2–60° that is significantly wider than that of our previous studies. We confirm our earlier results that the negative polarization of the surfaces may be a remnant of the negative polarization of the single scattering by the particles that constitute the surfaces. We also find differences in the spectral behavior of the polarization degree of particles in air and particulate surfaces at large phase angles.  相似文献   

6.
The O3 absorption coefficients for the rotational lines P(12)–P(28) of the 9.4 μm emission band of the CO2 laser are presented. Measurements were made in O3–air dilute mixtures (20–600 ppm) at 25°C and a total pressure of 1013.25 h Pa using a frequency stabilized cw CO2 laser and values have been determined with greater precision than in previously reported studies.  相似文献   

7.
LaAlO3 crystals have been investigated with differential scanning calorimetry (DSC), high-precision X-ray powder diffraction (XRD) and scanning force microscopy (SFM). The DSC measurements show the second-order phase transition of LaAlO3 at 544°C, where LaAlO3 changes its symmetry from the cubic Pm3m high-temperature phase to the pseudocubic rhombohedral low-temperature phase. This paraelastic to improper ferroelastic phase transition causes twinning in the {100} and {110} planes of the pseudocubic lattice. The twin angles between the surface {100}pseudocubic planes of twin domains were measured by SFM on the surface of a macroscopic (100)cubic cut crystal plate. The misorientation angle ω100 between {100} twins is 0.195(8)°, while {110} twinning gives an angle of ω110=0.276(7)°. The two twin kink angles correspond to a rhombohedral angle of the pseudocubic cell of the phase as 1=90.0973(40)° and 2=90.0975(30)°, respectively. The XRD result for this rhombohedral angle is =90.096(1)°. The orientation of the misfit steps formed during annealing after mechanical surface polishing depends on the domain orientation and pattern during polishing. Any heating close to or above Tc changes the domain pattern. Footprints of previous domain patterns can thus be found on the surface in the form of surface corrugation and changes in the shape and orientation of misfit steps.  相似文献   

8.
Pulsed optical stimulation of luminescence has been used to study the thermal dependence of luminescence lifetimes in quartz over the temperature range 20–200°C. Time-resolved spectra for lifetime analysis were recorded from samples of quartz over a dynamic range of 64 μs following stimulation of luminescence by pulsed 525 nm green light emitting diodes (LEDs) using an 11 μs pulse and 12% duty cycle. It has been demonstrated that an increase in measurement temperature generally leads to a decrease in lifetimes from about 30 μs at 20°C to about 7 μs at 200°C. The form of the decrease is influenced by the initial optical or thermal pre-treatment of samples.  相似文献   

9.
The target asymmetry in γd → pn has been measured at proton c.m. angles of 70°, 100° and 130° in the photon energies between 0.3 and 0.7 GeV. Results show relatively small asymmetry values in contrast to large proton polarizations. A phenomenological analysis by Ikeda et al. does not reproduce the present data, especially in the lower energy region.  相似文献   

10.
Nd:Ca4YO(BO3)3 (Nd:YCOB) crystal was grown by the Czochralski method, and its structure was measured by using a four circle X-ray diffractometer. The transparent spectrum from 200 to 2600 nm was measured at room temperature. The fluorescence spectrum near 1.06 μm showed that the main emission wavelength of Nd:YCOB crystal was centered at 1060.8 nm. Laser output at 1.06 μm has been demonstrated when it was pumped by a Ti:sapphire laser at the wavelength of 794 nm, the highest output power was 68 mW under pumping power of 311 mW, the pumping threshold was 163 mW and slope efficiency was 46.9%. The self-frequency doubled green light has been observed when it was pumped by a Ti:sapphire or a laser diode (LD). A 14.5 mm Nd:YCOB crystal sample cut at (θ, φ)=(90°, 33°) was used for type I second-frequency generation (SHG) of the 1.06 μm laser pulse. The SHG conversion efficiency was 22%.  相似文献   

11.
Differential cross sections for the reactions 16O(γ, ππ+−)16F16F to the sum of the four lowest lying states in 16F and 16N have been measured as a function of angle for pions with a kinetic energy of 30 MeV. The extracted ratios R = σ(γ, π)/σ(γ, π+), the first ones to discrete final states as a function of angle, are in fair agreement with results obtained for the nucleon. For positive pions the energy dependence of the cross section has been measured at the angles of 45° and 90°. Distorted wave impulse approximation calculations fail to describe the energy dependence.  相似文献   

12.
A 9 μm cutoff 640 × 512 pixel hand-held quantum well infrared photodetector (QWIP) camera has been demonstrated with excellent imagery. A noise equivalent differential temperature (NEDT) of 10.6 mK is expected at a 65 K operating temperature with f/2 optics at a 300 K background. This focal plane array has shown background limited performance at a 72 K operating temperature with the same optics and background conditions. In this paper, we discuss the development of this very sensitive long-wavelength infrared camera based on a GaAs/AlGaAs QWIP focal plane array and its performance in quantum efficiency, NEDT, uniformity, and operability. In the second section of this paper, we discuss the first demonstration of a monolithic spatially separated four-band 640 × 512 pixel QWIP focal plane array and its performance. The four spectral bands cover 4–5.5, 8.5–10, 10–12, and 13.5–15 μm spectral regions with 640 × 128 pixels in each band. In the last section, we discuss the array performance of a 640 × 512 pixel broad-band (10–16 μm full-width at half-maximum) QWIP focal plane.  相似文献   

13.
The reaction γp → π°γ′p has been measured with the TAPS BaF2 calorimeter at the Mainz Microtron accelerator facility MAMI for energies between √2 = 1221–1331 MeV. Cross sections differential in angle and energy have been determined for the photon γ′ in three bins of the excitation energy. This reaction channel provides access to the magnetic dipole moment of the Δ+(1232) resonance and, for the first time, a value of μΔ+ = (2.7+1.0−1.3(stat) ± 1.5(syst) ± (theor)) πN has been extracted.  相似文献   

14.
Intracavity type-I sum-frequency mixing of 1.06 μm and 532 nm with a (θ,)=(106°,77.2°)-cut YCOB crystal was performed in a compact laser-diode-pumped solid-state laser. Three type-II phase-matching KTP crystals with different length were used to generate 532 nm light by frequency-doubling of 1.06 μm. The 355 nm output power was measured with the three KTP crystals for Q-switched and continuous-wave (CW) operation, respectively. The maximum ultraviolet output power of 1305 μW was obtained with a 15 mm KTP crystal for CW operation, while the maximum ultraviolet average output power of 124 mW was obtained with a 10 mm KTP crystal for Q-switched operation.  相似文献   

15.
Thin films of copper oxide with thickness ranging from 0.05–0.45 μm were deposited on microscope glass slides by successively dipping them for 20 s each in a solution of 1 M NaOH and then in a solution of copper complex. Temperature of the NaOH solution was varied from 50–90°C, while that of the copper solution was maintained at room temperature. X-ray diffraction patterns showed that the films, as prepared, are of cuprite structure with composition Cu2O. Annealing the films in air at 350°C converts these films to CuO. This conversion is accompanied by a shift in the optical band gap from 2.1 eV (direct) to 1.75 eV (direct). The films show p-type conductivity, 5×10−4 Ω−1 cm−1 for a film of thickness 0.15 μm. Electrical conductivity of this film increases by a factor of 3 when illuminated with 1 kW m−2 tungsten halogen radiation. Annealing in a nitrogen atmosphere at temperatures up to 400°C does not change the composition of the films. However, the conductivity in the dark as well as the photoconductivity of the film increases by an order of magnitude. The electrical conductivity of the CuO thin films produced by air annealing at 400°C, is high, 7×10−3 Ω−1 cm−1. These films are also photoconductive.  相似文献   

16.
The FTIR spectroscopy of carbon monoxide adsorbed on polycrystalline MgO smoke has been investigated as a function of the CO equilibrium pressure at constant temperature (60 K) (optical isotherm) and of the temperature (in the 300–60 K range) at constant CO pressure (optical isobar). In both cases the spectra fully reproduce those of CO adsorbed on the (0 0 1) surface of UHV cleaved single crystals [Heidberg et al., Surf. Sci. 331–333 (1995) 1467]. This result, never attained in previous investigations on dispersed MgO, contribute to bridging the gap which is commonly supposed to exist between surface science and the study of “real” (defective) systems. Depending on the surface coverage θ the main spectral features due to the CO/MgO smoke interaction are a single band shifting from 2157.5 (at θ→0) to 2150.2 cm−1 (at θ=1/4) or a triplet, at 2151.5, 2137.2 and 2132.4 cm−1 (at θ>1/4). These manifestations are due to the ν(CO) modes of Mg5C2+· · · CO adducts formed on the (0 0 1) terminations of the cubic MgO smoke microcrystals. The formation of the CO monolayer is occurring in two different phases: (i) a first phase with CO oscillators perpendicularly oriented to the surface (2157–2150 cm−1) and (ii) a second phase constituted by an array of coexisting perpendicular and tilted species (triplet at 2151.5, 2137.2 and 2132.4 cm−1). A much weaker feature at 2167.5–2164 cm−1 is assigned to Mg4C2+· · · CO adducts at the edges of the microcrystals. The heat of adsorption of the perpendicular Mg5C2+· · · CO complex in the first phase has been estimated from the optical isobar and results to be 11 kJ mol−1.  相似文献   

17.
Atmospheric radiation in the infrared (IR) 8–13 μm spectral region contains a wealth of information that is very useful for the retrieval of ice cloud properties from aircraft or space-borne measurements. To provide the scattering and absorption properties of nonspherical ice crystals that are fundamental to the IR retrieval implementation, we use the finite-difference time-domain (FDTD) method to solve for the extinction efficiency, single-scattering albedo, and the asymmetry parameter of the phase function for ice crystals smaller than 40 μm. For particles larger than this size, the improved geometric optics method (IGOM) can be employed to calculate the asymmetry parameter with an acceptable accuracy, provided that we properly account for the inhomogeneity of the refracted wave due to strong absorption inside the ice particle. A combination of the results computed from the two methods provides the asymmetry parameter for the entire practical range of particle sizes between 1 and 10,000 μm over the wavelengths ranging from 8 to 13 μm. For the extinction and absorption efficiency calculations, several methods including the IGOM, Mie solution for equivalent spheres (MSFES), and the anomalous diffraction theory (ADT) can lead to a substantial discontinuity in comparison with the FDTD solutions for particle sizes on the order of 40 μm. To overcome this difficulty, we have developed a novel approach called the stretched scattering potential method (SSPM). For the IR 8–13 μm spectral region, we show that SSPM is a more accurate approximation than ADT, MSFES, and IGOM. The SSPM solution can be further refined numerically. Through a combination of the FDTD and SSPM, the extinction and absorption efficiencies are computed for hexagonal ice crystals with sizes ranging from 1 to 10,000 μm at 12 wavelengths between 8 and 13 μm.

Calculations of the cirrus bulk scattering and absorption properties are performed for 30 size distributions obtained from various field campaigns for midlatitude and tropical cirrus cloud systems. Ice crystals are assumed to be hexagonal columns randomly oriented in space. The bulk scattering properties are parameterized through the use of second-order polynomial functions for the extinction efficiency and the single-scattering albedo and a power-law expression for the asymmetry parameter. We note that the volume-normalized extinction coefficient can be separated into two parts: one is inversely proportional to effective size and is independent of wavelength, and the other is the wavelength-dependent effective extinction efficiency. Unlike conventional parameterization efforts, the present parameterization scheme is more accurate because only the latter part of the volume-normalized extinction coefficient is approximated in terms of an analytical expression. After averaging over size distribution, the single-scattering albedo is shown to decrease with an increase in effective size for wavelengths shorter than 10.0 μm whereas the opposite behavior is observed for longer wavelengths. The variation of the asymmetry parameter as a function of effective size is substantial when the effective size is smaller than 50 μm. For effective sizes larger than 100 μm, the asymmetry parameter approaches its asymptotic value. The results derived in this study can be useful to remote sensing studies of ice clouds involving IR window bands.  相似文献   


18.
The peak absorption coefficients for two near-infrared absorptions of monomethylhydrazine, CH3-N2H3, (MMH) were measured. Absorption bands located at 1.524 μm (6560 cm-1), 1.557 μm (6423 cm-1), and 1.583 μm (6316 cm-1) are assigned to the υ = 2 overtones of the infrared N-H stretching fundamentals at 3317, 3245 and 3177 cm-1. An absorption band located at 1.04 μm (9620±100 cm-1) is assigned to the υ = 3 overtone of one of these fundamentals. The peak absorption coefficients (10) at 1.524 μm (6560±20 cm-1) and 1.04 μm (9620±100 cm-1) are 31 × 10-3 and 0.97 × 10-3 (cm atm)-1, respectively. Uncertainties in these coefficients were estimated to be less than ±20% due primarily to uncertainties in the partial vapor pressure of MMH.  相似文献   

19.
To increase the detection range in staring FPAs, commonly the integration time Ti is increased, as the range is assumed to increase as one-fourth power of Ti, (Ti1/4). It is shown here that the range dependence on Ti is weaker than Ti1/4, because of the effect of atmosphere. Since the atmospheric transmission coefficient decreases with increasing range, the effect of increasing Ti on the range is considerably reduced. It is also shown that when detector 1/f noise dominates over other noise sources, the dependence of range on Ti is much weaker than Ti1/4, having a logarithmic dependence Calculations have been done by integrating equations involving spectral functions—photon flux, atmospheric transmission coefficient, optics transmission coefficient and responsivity—over wavelength, in the spectral range from 8 μm to 12 μm. LOWTRAN2 has been used for spectral atmospheric transmission coefficients, for different conditions of ambient temperature (−30°C to 55°C) and relative humidity (50–85%). The range formulation also distinguishes between distant targets (point sources) and nearby targets (extended sources). The analysis is applicable for terrestrial imaging, where the temperature difference of the target and the background is small. The effect of fixed pattern noise (FPN) in mercury cadmium telluride (MCT) FPAs has also been considered by modeling FPN in terms of a composition variation in the MCT. It is seen that range, both in the point source and the extended source cases, is not a sensitive function of FPN.  相似文献   

20.
Single-walled carbon nanotubes (SWCNTs) have been synthesized in high yield by the dc arc discharge technique under heat-pretreatment of the graphite rod conditions. Before executing arc discharge, the graphite rods containing the catalysts were heat treated at 600, 700, 800 and 900 °C for 1–3 h, respectively. Effects of heat-pretreatment of the graphite rod on the quality of SWCNTs by arc discharge were investigated. The heat-treatment temperature and time were found to be crucial for a high yield of high-purity SWCNTs. Optimum parameter was found to be at the heat-treatment temperature of 800 °C for 2 h. The SWCNTs synthesized under the optimum condition have better field-emission characteristics. The turn-on field needed to produce a current density of 10 μA/cm2 is found to be 1.9 V/μm and the threshold field where current density reaches 10 mA/cm2 is 3.9 V/μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号