首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Calorimetry combined with thermal analysis is an essential tool for the evaluation of thermal risks linked with chemical reactions at industrial scale. The energies of synthesis reactions or decomposition reactions as well as the heat capacities of reaction masses can be measured using such techniques. The capacity of the SETARAM differential reaction calorimeter (DRC) to determine essential safety data has been demonstrated with the measurement of heat capacities of cyclohexane and propanoic acid. Results of an industrial reaction are also presented.  相似文献   

2.
在外界环境条件恒定的情况下,反应体系NH~4ClO~4+Mg+K~2Cr~2O~7的燃烧过程是不均匀的,燃烧和光强呈周期性的强弱变化,给出了典型的化学振荡现象。本文介绍了NH~4ClO~4+Mg+K~2Cr~2O~7体系的固相振荡燃烧配方,对新配方进行了实验,研究了这个体系的固相振荡燃烧现象的非线性特性,分析了固相化学振荡的非线性化学反应动力学机理。  相似文献   

3.
李林  林坚  李筱玉  王爱琴  王晓东  张涛 《催化学报》2016,(12):2039-2052
多相催化反应过程伴随着反应分子与催化剂表面之间的相互作用.这种相互作用强度与催化剂的反应性能密切相关.根据萨巴蒂尔原理(Sabatier principle),性能最优的催化剂与反应中间体之间应该具有适中的相互作用强度,一方面促进反应物活化,另一方面允许产物脱附.这样,测量和研究反应分子与催化剂之间的相互作用强度对于理解催化反应性能有非常重要的意义.当气体反应物接触到催化剂表面会伴随着热量的产生,该热量被定义为吸附热,并与吸附物种与催化剂之间形成的化学键强度直接相关.吸附热通常可以通过程序升温脱附(TPD)等方法间接获得.但是这些方法建立在吸附物种能够可逆地吸附和脱附的假设基础上.在实际的程序升温过程中,吸附物种通常会发生分解,并伴随着固体催化剂的重构等现象.因此,采用基于Tian-Calvet原理的热流量热计直接测量担载催化剂的吸附热是最可靠的吸附热测量方法.基于热流量热计测量的微量热技术的一个重要优点是采用合适的探针分子吸附,可以获得担载型催化剂表面吸附活性中心的数量、强度及其能量分布的定量信息.比如,采用碱性探针分子NH3或者吡啶,酸性探针分子CO2或SO2能够定量催化剂上酸-碱位的强度和数量,而金属催化剂活性中心可以应用H2或CO进行探测.当这些催化剂活性中心的定量表征结果与催化剂的反应活性测试结果相关联时,可以区分不同强度活性中心的反应性能,并为提高和改进催化剂性能提供研制方向.相对于NH3或CO等小分子气体,催化反应的反应物、产物或可能的中间体通常都是复杂分子,程序升温技术测量它们的吸附热时,这些分子通常会发生分解,限制了其吸附热的测量和研究.微量热技术能够直接测量这些分子的吸附热.因此,与催化反应活性相关联,反应物、产物或可能的中间体的吸附能量的测量和研究有利于更直接地认识催化剂的反应性能.在催化反应循环过程中,除了吸附,还包括表面反应和脱附步骤.这些步骤也伴随着吸附物种与催化剂之间键的形成与转换,并以热量的形式表现出来.测量这些热量对于认识催化反应过程,理解催化反应机理有重要的意义.热流量热计与催化微反系统相结合,为催化反应过程能量的测量和研究提供了可能.尽管微量热技术在测量担载型催化剂的吸附/反应能量并与反应性能相关联方面有其独特的优势,但是为了更好地用于催化研究,应该结合其它的表征技术(比如红外)确定吸附或反应物种的本质,结合理论计算对量热结果进行更好地补充和认识.本文综述了担载型催化剂的吸附/反应能量与反应性能关联的研究进展,指出了微量热技术在催化研究中的优势、不足,以及未来的研究方向.  相似文献   

4.
Due to the significant human effort and chemical intuition required to locate chemical reaction pathways with quantum chemical modeling, only a small subspace of possible reactions is usually investigated for any given system. Herein, a systematic approach is proposed for locating reaction paths that bypasses the required human effort and expands the reactive search space, all while maintaining low computational cost. To achieve this, a range of intermediates are generated that represent potential single elementary steps away from a starting structure. These structures are then screened to identify those that are thermodynamically accessible, and then feasible reaction paths to the remaining structures are located. This strategy for elementary reaction path finding is independent of atomistic model whenever bond breaking and forming are properly described. The approach is demonstrated to work well for upper main group elements, but this limitation can easily be surpassed. Further extension will allow discovery of multistep reaction mechanisms in a single computation. The method is highly parallel, allowing for effective use of modern large‐scale computational clusters. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Recently, the application of ReaxFF based reactive molecular dynamics simulation (ReaxFF MD) in complex processes of pyrolysis, oxidation and catalysis has attracted considerable attention. The analysis of the simulation results of these processes is challenging owing to the complex chemical reactions involved, coupled with their dynamic physical properties. VARxMD is a leading tool for the chemical reaction analysis and visualization of ReaxFF MD simulations, which allows the automated analysis of reaction sites to get overall reaction lists, evolution trends of reactants and products, and reaction networks of specified reactants and products. The visualization of the reaction details and dynamic evolution profiles are readily available for each reactant and product. Additionally, the detailed reaction sites of bond breaking and formation are available in 2D chemical structure diagrams and 3D structure views; for specified reactions, they are categorized on the basis of the chemical structures of the bonding sites or function groups in the reacting species. However, the current VARxMD code mainly focuses on global chemical reaction information in the simulation system of the ReaxFF MD, and is incapable of locally tracking the chemical reaction and physical properties in a 3D picked zone. This work extends the VARxMD from global analysis to a focused 3D zone picked interactively from the 3D visualization modules of VARxMD, as well as physical property analysis to complement reaction analysis. The analysis of reactions and physical properties can be implemented in three steps: picking and drawing a 3D zone, identifying molecules in the picked zone, and analyzing the reactions and physical properties of the picked molecules. A 3D zone can be picked by specifying the geometric parameters or drawing on a screen using a mouse. The picking of a cuboid or sphere was implemented using the VTK 3D view libraries by specifying geometric parameters. The interactive 3D zone picking was implemented using a combination of observer and command patterns in the VTK visualization paradigm. The chemical reaction tracking and dynamic radial distribution function (RDF) of the 3D picked zone was efficiently implemented by inheriting data obtained from the global analysis of VARxMD. The reaction tracking between coal particles in coal pyrolysis simulation and dynamic structure characterization of carbon rich cluster formation in the thermal decomposition of an energetic material are presented as application examples. The obtained detailed reactions between the coal particles and comparison of the reaction between the locally and globally picked areas in the cuboid are helpful in understanding the role of micro pores in coal particles. The carbon to carbon RDF analysis and comparison of the spherical region picked for the layered molecular clusters in the pyrolysis system of the TNT crystal model with the standard RDF of the 5-layer graphene demonstrate the extended VARxMD as a chemical structure characteristic tool for detecting the dynamic formation profile of carbon rich clusters in the pyrolysis of TNT. The extended capability of VARxMD for a 3D picked zone of a ReaxFF MD simulation system can be useful for interfacial reaction analysis in a catalysis system, hot spot formation analysis in the detonation of energetic material systems, and particularly the pyrolysis or oxidation processes of coal, biomass, polymers, hydrocarbon fuels, and energetic materials.  相似文献   

6.
Due to dynamic nature of processes taking place during the experiment (chemical reaction and physical processes, heat flow, gas flow, etc.) the results obtained by thermal methods may considerably depend on the conditions used during the experiment. Therefore, whenever the results of thermal analysis are reported, the experimental conditions used should be stated. In this paper we have studied the heat transfer from the furnace to the sample and through the sample during dynamic mechanical analysis measurements. Numerical modelling of the heat transfer was done using an own computer program based on the heat conduction equation, solved numerically applying the finite difference methods. The calculated values of the thermal lag between the furnace and the sample were compared with the values experimentally determined on samples of a composite polymeric energetic material (double-base rocket propellant). Also, the temperature distribution within the sample as a function of the heating rate was analysed using the same numerical model. It was found out that using this model and temperature dependent heat transfer coefficient, experimentally obtained values of the thermal lag between the furnace and the sample can be satisfactory described. It was also shown that even at slow heating rates, such is, e.g. 2 °C min−1, the thermal lag between the furnace and the sample can reach several degrees, while the thermal gradient within 3-mm thick rectangular sample can reach 0.4 °C.  相似文献   

7.
Quantitative investigations were performed for the synthesis of colloidal particles of cobalt hydroxide in agarose gel by the moving chemical reaction boundary method . The experimental results show that: (1) the sizes of the colloidal particles can be controlled by changing the concentration of agarose gel, (2) the concentration of the colloidal particles is also controlled by changing the concentrations of CoCl2 and/or NaOH, and (3) most importantly, the concentration of colloidal particles can be predicted with the theory of moving chemical reaction boundary (MCRB). The colloidal particles prepared by the MCRB are amorphous and are more easily oxidized than particles prepared by other methods.  相似文献   

8.
The heat of reaction has been measured for vapor deposition of metal atoms onto clean polymeric substrates. These calorimetric measurements introduce a new technique for the study of metal-polymer interfacial chemistry. Results for three systems are reported here, calcium, chromium, and copper on PMDA-ODA polyimide, and widely different reaction heats are observed in each case. Our results show that calcium deposition is very exothermic at low coverages, with an initial heat approaching 610 kJ/mol. In the case of chromium deposition, the initial heat is quite low, 125 kJ/mol or less, an affect we attribute to the energetic cost of polymer bond disruption. The data for copper deposition show that calorimetry can be used to study fine details of the nucleation and growth process of the metal island film.  相似文献   

9.
Shortest common supersequence (SCS) is a classical NP-hard problem, where a string to be constructed that is the supersequence of a given string set. The SCS problem has an enormous application of data compression, query optimization in the database and different bioinformatics activities. Due to NP-hardness, the exact algorithms fail to compute SCS for larger instances. Many heuristics and meta-heuristics approaches were proposed to solve this problem. In this paper, we propose a meta-heuristics approach based on chemical reaction optimization, CRO_SCS that is designed inspired by the nature of the chemical reactions. For different optimization problems like 0-1 knapsack, quadratic assignment, global numeric optimization problems CRO algorithm shows very good performance. We have redesigned the reaction operators and a new reform function to solve the SCS problem. The outcomes of the proposed CRO_SCS algorithm are compared with those of the enhanced beam search (IBS_SCS), deposition and reduction (DR), ant colony optimization (ACO) and artificial bee colony (ABC) algorithms. The length of supersequence, execution time and standard deviation of all related algorithms show that CRO_SCS gives better results on the average than all other algorithms.  相似文献   

10.
《Mendeleev Communications》2021,31(6):769-780
The synthesis of the desired chemical compound is the main task of synthetic organic chemistry. The predictions of reaction conditions and some important quantitative characteristics of chemical reactions as yield and reaction rate can substantially help in the development of optimal synthetic routes and assessment of synthesis cost. Theoretical assessment of these parameters can be performed with the help of modern machine-learning approaches, which use available experimental data to develop predictive models called quantitative or qualitative structure–reactivity relationship (QSRR) modelling. In the article, we review the state-of-the-art in the QSRR area and give our opinion on emerging trends in this field.  相似文献   

11.
Bilayer film Fourier transform infrared (FTIR) model experiments are designed to provide a well-defined interface for study which can be probed by infrared spectroscopy during the interdiffusion and reaction of two reactive polymers. This provides a model experiment to determine the kinetics and extent of reaction between functionalized polymers during reactive polymer blending. This type of experiment provides data on the reaction at a stagnant interface which is necessary for the analysis of the interface while it is simultaneously undergoing deformation. It is also useful as a screening or preliminary experiment on reactive blending systems in that the extent of reaction may be followed for different systems at different temperatures. Experiments reported here trace the reaction of a styrene–maleic anhydride copolymer with two different amine terminated polymers. Results are obtained for the interdiffusion and reaction of a styrene-maleic anhydride copolymer with two amine terminated polymers: a butadiene-acrylonitrile copolymer and Nylon 11. The kinetics from these experiments include contributions due to both interdiffusion and chemical reaction. The chemical reaction kinetics may be isolated from the diffusion kinetics by performing experiments on well-mixed systems which are prepared by casting films of the polymer mixtures from a mutual solvent. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Nitro compounds are capable of rapid chemical decompositions with a large amount of energy releases and hence pose significant thermal explosion hazards. Molecular simulation has been well established and demonstrated as an effective tool to predict physical and/or chemical properties of energetic materials, such as onset temperature, heat of reaction, and shock sensitivity. In this work, a simple relationship for predicting the onset temperature of nitro aromatic compounds containing other functional groups is developed based on their molecular structures. The results have shown that the thermal onset temperature of a specific nitro aromatic compound is strongly related to its excitation energy (a singlet state to triplet state). The predicted onset temperatures show very good agreement with respect to the measured onset temperatures by differential scanning calorimetry. Deviations compared to the experimental values are very small. These correlations can be used to computationally screen new nitro compounds for their thermal explosion hazards. These correlations can also be applied as a preliminary thermal analysis method and expedite the evaluation process of new energetic materials.  相似文献   

13.
The influence of energetic parameters of the interchain homo- and heterocontacts on a local ordering of Bernoullian copolymers has been studied using Monte Carlo simulations and probabilistic analysis. The results of both methods are in a good agreement. Then simple Monte Carlo procedure was employed to study the ordering in products of a polymeranalogous reaction with accelerating effect of neighboring groups. When the reaction with intra- and interchain acceleration and local ordering proceed simultaneously in confined conditions, the ordering might affect the process so that the formation of certain nano-structures (in particular, not trivial strip-like ones) is possible.  相似文献   

14.
Anil Kumar  Sanjay S. Pawar 《Tetrahedron》2003,59(27):5019-5026
The Baylis-Hillman reaction is shown to accelerate in salt solutions of water and the ‘water-like’ structured solvents, like formamide and N-methylformamide in the presence of DABCO. Ethylene glycol, another structured solvent and its salt solutions fail to make any impact on the reaction rates. The salts that are conventionally defined as salting-out or -in do not behave in a similar fashion, when employed in the Baylis-Hillman reactions. The results are supported by solubility measurements. It seems that the cation, anion, nature of solvent and of reactants together ascertain whether a salt will enhance or retard the Baylis-Hillman reaction.  相似文献   

15.
Decomposition reactions of liquids and solids can be observed by the heat development using microcalorimetric methods. By determination of the released heat flow for heating up a sample, it is possible to get details to answer safety relevant questions.For reactions nth order the overall activation energy and the accompanying frequency factor can be determined, provided that the heat release is determined by the rate of a single reaction step. Researches have been carried out whether these parameters are useable for safety technical specifications.Autocatalytic affected decomposition reactions are connected with special problems. This affects the experimental examination or interpretation of results, and also the precise identification of beginning decomposition reactions in technical reactors. The application of microcalorimetric measurements on decomposition reactions is described and associated problems are pointed out.The conclusions from thermoanalysis data alone are not sufficient in the final consequence for safety technical assessments.  相似文献   

16.
在氧化呋咱环上引入氨基或硝基等功能基团,可提高含能化合物的能量密度和爆炸性能。为了获得更高能量密度的新型含能化合物,本文利用密度泛函理论(DFT)和单、双激发的耦合簇(CCSD)方法探索了以3-酰基叠氮基-4硝基氧化呋咱为起始材料,在二氧六环和水混合溶剂中合成3-氨基-4硝基氧化呋咱的反应机理,给出了反应的势能曲线。结果表明,该反应主要分为两个阶段:3-酰基叠氮基-4硝基氧化呋咱脱N2后进行Curtious重排产生异氰酸酯;异氰酸酯经水解、羟基扭转、CO2的脱离形成产物。反应的决速步为CO2的脱离,能垒为44kcal/mol。因此,加热是实现该合成反应的必要条件。水既绿色环保,又参与反应,是该反应的最佳溶剂。这些结果为3-氨基-4-硝基氧化呋咱的实验合成提供了必要的理论依据。  相似文献   

17.
A Grignard reaction of reactantA and phenyl magnesium chloride is used to make a pharmaceutical intermediate at the production scale. The elimination of protecting groups onA was proposed as a means to reduce synthesis costs. This new synthesis route, however, had process efficiency and safety issues associated with it: (1) build-up of unreactedA in the reactor, (2) influence ofA's particle size on the reaction rate, (3) the sensitivity of the reaction rate to the reaction temperature and to the (changing) solvent composition, and (4) the highly exothermic nature of the reaction.The Mettler RC1 Reaction Calorimeter was used to quantify the influence of solvent composition, temperature, and particle size on the reaction rate. Results indicated a dramatic effect of solvent composition and reaction temperature on the reaction rate; for example, over a temperature range of just 30°C, the reaction time decreased from more than a day to just a few minutes. At such high reaction rates, the vessel jacket could not remove the reaction heat sufficiently and the internal temperature rose adiabatically.These results were used to make process design and operation recommendations for safe and efficient plant operation with this modified Grignard reaction system.The authors would like to thank the following for their assistance in this work: E. Daugs for preparing the Grignard reagents, K.L. Gonzales for her help in running the experiments and in the subsequent data work-up; P.M. Russell for his assistance in the design of the slurry addition assembly, and K. Chritz and J. Engel for performing the HPLC analyses of the samples.  相似文献   

18.
The highly energetic compound 1,3,5-triaminoguanidinium dinitramide (1) was prepared in high yield (82%) according to a new synthesis by the reaction of potassium dinitramide and triaminoguanidinium perchlorate. The heat of formation was calculated in an extensive computational study (CBS-4M). With this the detonation parameters of compound were computed using the EXPLO5 software: D = 8796 m s(-1), p = 299 kbar. In addition, a full characterization of the chemical properties (single X-ray diffraction, IR and Raman spectroscopy, multinuclear NMR spectroscopy, mass spectrometry and elemental analysis) as well as of the energetic characteristics (differential scanning calorimetry, thermal safety calorimetry, impact, friction and electrostatic tests) is given in this work. Due to the high impact (2 J) and friction sensitivity (24 N) several attempts to reduce these sensitivities were performed by the addition of wax. The performance of was tested applying a "Koenen" steel sleeve test resulting in a critical diameter of > or =10 mm.  相似文献   

19.
20.
The product distribution of the reaction of acetic acid, CH(3)COOH, with hydroxyl radicals, OH, was studied experimentally and theoretically. Mass-spectrometric measurements at 290 K and 2 Torr of He of the CO(2) yield versus the loss of acetic acid yielded a branching fraction of 64 +/- 14% for the abstraction of the acidic hydrogen as follows: CH(3)COOH + OH --> CH(3)COO + H(2)O --> CH(3) + CO(2) + H(2)O. A quantum chemical and theoretical kinetic analysis showed that the abstraction of the acidic hydrogen is enhanced relative to the abstraction of -CH(3) hydrogens because of the formation of a strong pre-reactive H-bonded complex, where the H-bonds are retained in the H-abstraction transition state. The potential energy surface of the reaction is explored in detail, and the reaction products of the individual channels are identified. The theoretical product branching is found to be critically dependent on the energetic and rovibrational differences between the H-abstraction transition states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号