首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Residue levels of parathion methyl on field-sprayed Granny-Smith apples were studied. The pesticide was applied according to producer recommendations. Apples received a single spraying at a rate of 40 g active ingredient/100 L. Residues were determined with a simple gas chromatographic method. Recovery of parathion methyl was 88-108%, and the limit of determination was 0.002 mg/kg. Decomposition of parathion methyl was studied in apples remaining on trees after spraying and in apples harvested and stored under ambient-temperature, refrigerated-room, and controlled-atmosphere conditions. During post harvest storage, parathion methyl degrades more slowly than on apples remaining on the trees. Best-fit curves were determined, and kinetic equations, rate constants, and half-lives were calculated. Half-lives found were 8 days for apples on trees, 45 days for apples stored at ambient conditions, 68 days for apples stored in controlled-atmosphere room, and 62 days for apples stored in a refrigerated room. Under storage conditions, levels of parathion methyl residues need a long time to become lower than the legal limit (0.2 mg/kg).  相似文献   

2.

High-performance liquid chromatography with solid-phase extraction (HPLC-SPE) was optimized for the analysis of three organophosphorus pesticide residues in water, apples and vegetable samples. Octadecylsilica disks (47-mm diameter) were used for solid-phase extraction. The parameters that affect both separation and extraction of methyl parathion, parathion and phoxim, such as mobile-phase composition, ionic strength, temperature, pH, and breakthrough volume, were investigated. The application of optimized HPLC-SPE to environmental samples gave reproducible results with low detection limits of 5 µg L?1 for methyl parathion and parathion and 2.5 µgL?1. Precisions of less than 8, 9 and 12% were obtained for water, spinach and apple samples, respectively.  相似文献   

3.
为明确并量化食用桃途径的农药膳食摄入风险水平,通过对19个桃主产区采集的98份样品进行农药残留检测,对桃中的农药残留急/慢性膳食摄入风险进行评估,并借鉴英国兽药残留委员会兽药残留风险排序矩阵进行农药和样品风险排序。结果在桃中检出了38种农药残留,98个样品的检出率为95.9%,检出的农药含量为0.007 4~3.399 3 mg/kg;检出农药的慢性膳食摄入风险(%ADI)和急性膳食摄入风险(%ARfD)的平均值分别为0.89%和11.09%,风险均低于100%,不会对人体产生慢性或急性风险;风险排序结果表明桃果品中氟虫腈、硫丹、灭多威、丁硫克百威、毒死蜱、联苯菊酯为6种为高风险农药,应在生产和质量安全监管中予以重点关注。该文为桃安全消费、农药残留监管和农药最大残留限量(MRLs)制修订提供了科学依据。  相似文献   

4.
The dissipation and terminal residues of oryzalin in grape ecosystem under open-field condition were investigated at two different locations, Beijing and Shandong in China. Residues in field-treated samples were determined by a sample method using rapid resolution liquid chromatography triples quadrupole tandem mass spectrometry (RRLC-QqQ-MS/MS). This method showed satisfactory qualitative and quantitative performance. The mean recoveries of oryzalin at different fortification levels (0.01, 0.1 and 1 mg/kg for grape; 0.01, 0.1, 1, 10 and 30 mg/kg for soil) ranged from 88.2% to 98.8%, with the relative standard deviations ≤4.9%. The limits of detection and quantification were, respectively, 0.003 and 0.01 mg/kg. In soil, the dissipation half-lives were about 9 days and the terminal residues ranged from <0.01 to 0.58 mg/kg in both Beijing and Shandong. The concentrations of oryzalin in grapes were lower than 0.01 mg/kg in most of the samples of dissipation study and all the samples of residue study. As far as we know, this is the first study focusing on the dissipation and terminal residue of oryzalin in grape ecosystem, and no maximum residue limits (MRLs) of oryzalin in grapes were recommended by China, Codex Alimentarius Commission or European Union . Therefore, these data not only provide important information about the fate and residues of oryzalin in grape ecosystem, but also could be very useful for the establishment of the MRLs of oryzalin in grapes.  相似文献   

5.
罗启枚  李振  王辉宪  刘登友 《应用化学》2013,30(9):1082-1088
制备了一种简单的聚谷氨酸修饰玻碳电极的用于检测甲基对硫磷的电化学传感器。 并应用循环伏安法研究了甲基对硫磷在该修饰电极上的氧化还原行为;甲基对硫磷的浓度检测采用差分脉冲伏安法,结果表明,甲基对硫磷在5.0×10-7~7.5×10-4 mol/L浓度范围与响应电流有良好的线性关系。 甲基对硫磷检测限(S/N=3)可达1.0×10-9 mol/L。 该法制备的传感器有望应用于实际样品中的甲基对硫磷的检测。  相似文献   

6.
Residues of benzoylphenylurea insecticides (diflubenzuron, hexaflumuron, and flufenuxuron), carboxamide acaricides (hexythiazox), and carbamate insecticides (benfuracarb) were determined in 150 orange fruit samples from September 1998 to June 1999, to estimate exposure of the Valencian population to oranges contaminated with these newly developed pesticides. The method for monitoring these residues is based on matrix solid-phase dispersion and liquid chromatography with UV or atmospheric pressure chemical ionization/mass spectrometry (APCI/MS) detection. Orange samples representing 11 varieties were collected from an agricultural cooperative and examined for the 5 pesticides. In 74.6% of all analyzed samples, the pesticide residues were below detection limits, which ranged from 0.002 to 0.05 mg/kg. Residues were detected in 25.4% of the samples, with higher incidences of diflubenzuron, flufenuxuron, hexythiazox, and benfuracarb; hexaflumuron residues were detected only occasionally. Two different pesticides exceeded maximum residue limits (MRLs) in 4 (2.7%) of the orange samples. Diflubenzuron surpassed 1 mg/kg MRL in 3 samples and flufenuxuron exceeded the 0.3 mg/kg MRL in 3 samples. The estimated daily intake of the 5 pesticide residues during the period was 0.077 microg/kg body weight per day. This value is much lower than the total admissible daily intake proposed by the Food and Agricultural Organization and the World Health Organization.  相似文献   

7.
A novel sensor for the determination of parathion‐methyl based on couple grafting of functional molecular imprinted polymers (MIPs) was fabricated which is developed by anchoring the MIP layer on surfaces of silica particles embedded CdSe quantum dots by surface imprinting technology. The synthesized molecular imprinted silica nanospheres (CdSe@SiO2@MIP) allow a high selectivity and sensitivity of parathion‐methyl via fluorescence intensity decreasing when the MIP material rebinding the parathion‐methyl molecule. Compared with the MIP fabricated in traditional method, the template of parathion‐methyl was easier to remove from the CdSe@SiO2@MIP imprinted material. Under optimal conditions, the fluorescence intensity of parathion‐methyl at the imprinted sensor was detected by spectrofluorophotometer. The relative fluorescence intensity of CdSe@SiO2@MIP decreased linearly with the increasing concentration of parathion‐methyl ranging from 0.013 mg·kg−1 to 2.63 mg·kg−1 with a detection limit (3δ) of 0.004 mg·kg−1 (S/N=3), which is lower than the MIP in tradition. The imprinted film sensor was applied to detect parathion‐methyl in vegetable samples without the interference of other organophosphate pesticides and showed a prosperous application in the field of food safety.  相似文献   

8.
Monitoring pesticide residues in Egyptian fruits and vegetables in 1995.   总被引:3,自引:0,他引:3  
Organophosphorus, dithiocarbamates, and some synthetic pyrethroids pesticides, which are commonly used in Egypt for pest control, were monitored, as well as persistent organochlorines, which had been prohibited from use several years ago. Fruit and vegetable samples (397) were collected from 8 local markets and examined for 52 pesticides. Of all analyzed samples, 42.8% contained detectable residues, of which 1.76% exceeded their maximum residue limits (MRLs). The rates of contamination with the different pesticides were 0-86%. However, violation rates among contaminated products were very low, ranging from 0 to 4.6%. In general, organochlorine pesticide residues were not detected in most samples. Dithiocarbamate residues were found in 70.4% of 98 samples analyzed for dithiocarbamates, but only one grape sample had residues exceeding the MRL established by the Codex Committee on Pesticide Residues.  相似文献   

9.
An acryloyl β‐cyclodextrin‐silica hybrid monolithic column for pipette tip solid‐phase extraction and high‐performance liquid chromatography determination of methyl parathion and fenthion has been prepared through a sol–gel polymerization method. The synthesis conditions, including the volume of cross‐linker and the ratio of inorganic solution to organic solution, were optimized. The prepared monolithic column was characterized by thermogravimetric analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy. The eluent type, volume and flow rate, sample volume, flow rate, acidity, and ionic strength were optimized in detail. Under the optimized conditions, a simple and sensitive pipette tip solid‐phase extraction with high‐performance liquid chromatography method was developed for the determination of methyl parathion and fenthion in lettuce. The method yielded a linear calibration curve in the concentration ranges of 15–400 μg/kg for methyl parathion and 20–400 μg/kg for fenthion with correlation coefficients of above 0.9957. The limits of detection were 4.5 μg/kg for methyl parathion and 6.0 μg/kg for fenthion, respectively. The recoveries of methyl parathion and fenthion spiked in lettuce ranged from 96.0 to 104.2% with relative standard deviations less than 8.4%.  相似文献   

10.
A new facile fluorescence probing strategy, which was based on N-doped carbon dots(NCDs) and methyl parathion hydrolase(MPH), was developed for the determination of parathion-methyl(PM). The fluorescence intensity of NCDs-MPH system was proportional to PM concentration in the range of 2.38–73.78 mmol/L, with a detection limit of 0.338 mmol/L. Moreover, the present simple and facile method could be used to determine methyl parathion in environmental and agricultural samples successfully.Furthermore, the detection mechanism of this system is inner filter effect and molecular interactions between NCDs and p-nitrophenol, which is the hydrolysis product of PM catalyzed by methyl parathion hydrolase.  相似文献   

11.
A simple and rapid method was developed for determination of benomyl, diphenyl (DP), o-phenylphenol (OPP), thiabendazole (TBZ), chlorpyrifos, methidathion, and methyl parathion in whole oranges. These compounds were extracted from a mixture of samples and anhydrous sodium acetate with ethyl acetate. The ethyl acetate extract was concentrated and cleaned up by passing through tandem solid-phase extraction columns consisting of anion-exchange and primary/secondary amine bonded silica. The eluate was concentrated and volume was adjusted with methanol for subsequent liquid chromatography (LC) and gas chromatography (GC). Benomyl (as methyl-2-benzimidazole carbamate, MBC), DP, OPP, and TBZ residues were determined by LC with fluorescence detection. Recoveries at 3 fortified levels (0.1, 1, and 10 micrograms/g) ranged from 63.9 to 97.4%, with coefficients of variation (CVs) of 1.6 to 15.5%. Limits of detection (LODs) were 0.01 microgram/g for DP, OPP, TBZ and 0.05 microgram/g for benomyl. Chlorpyrifos, methidathion, and methyl parathion residues were determined by GC with flame photometric detection. Recoveries ranged from 90.4 to 97.0%, with CVs of 2.1 to 5.9%. LODs were 0.005 microgram/g for chlorpyrifos and methyl parathion, and 0.01 microgram/g for methidathion.  相似文献   

12.
This work describes an optimised method for the determination of six representative organophosphorus pesticides (OPPs) (diazinon, parathion, methyl pirimiphos, methyl parathion, ethoprophos, and fenitrothion) in agricultural soils. The method is based on microwave-assisted extraction using a water-methanol modified mixture for desorption and simultaneous partitioning on n-hexane (MAEP), together with gas chromatography-flame photometric detection (GC-FPD). To improve GC-FPD signals (peak intensity and shape) olive oil was used effectively as a "matrix mimic". The optimisation of the extraction method was achieved in two steps: an initial approach through experimental design and principal component analysis where recovery of compounds using a water-methanol mixture ranged from 54 to 77%, and the second one by studying the addition of KH2PO4 to the extracting solution where recoveries were significantly increased, molecular replacing of OPPs from adsorption sites by phosphate being the probable extraction mechanism. Under optimised conditions, recoveries of pesticides from different soils were higher than 73%, except for methyl parathion in some soils, with SD equal or lower than 11% and detection limits ranging from 0.004 to 0.012 microg g(-1). The proposed method was used to determine OPPs in soil samples from different agricultural zones of Chile.  相似文献   

13.
A selective, sensitive novel electrochemical sensor for detection of methyl parathion on the preparation of a carbon dots (C-dots)/ZrO2 nanocomposite was developed. The C-dots/ZrO2 nanocomposite was fabricated using electrochemical deposition onto a glassy carbon electrode and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and cyclic voltammetry. The optimum parameters such as effect of pH, accumulation time, accumulation potential, scan rate, effect of amount of C-dots and effect of amount of ZrO2 were investigated. The C-dots/ZrO2 modified glassy carbon electrode allowed rapid, selective determination of methyl parathion in rice samples by adsorptive stripping voltammetry. The stripping response was highly linear over the methyl parathion concentrations ranging from 0.2 ng mL?1 to 48 ng mL?1, with a detection limit of 0.056 ng mL?1. This novel electrochemical nanocomposite-based electrochemical sensor was successfully applied for the detection of methyl parathion in rice samples.  相似文献   

14.
Five organophosphorus pesticides (dichlorvos, diazinon, malathion, methyl parathion and coumaphos) were extracted from propolis by matrix solid-phase dispersion (MSPD) extraction using octadecylsilica (C18, 1.0 g) as dispersant material. The kind of solvent elution (acetonitrile or ethyl acetate), volume (8 mL and 15 mL), and adsorbent used to clean-up the extracts (graphitized carbon, florisil™ and silica) were optimized using fortified propolis samples (5.0 μg g−1). Recovery was determined by gas chromatography with mass spectrometric detection in selected ion monitoring mode (GC/MS-SIM) and statistical analysis was done to determine better extraction conditions. Relatively high recovery and lower relative standard deviation values (3.1–14.6%) were obtained when analytes were eluted with ethyl acetate from the MSPD column. Diazinon, malathion, methyl parathion, and coumaphos show recoveries of 72.7%, 84.6%, 62.6%, and 78.3%, respectively. In contrast, the recovery for dichlorvos was 53.8%. Additional adsorbents tested for clean-up and increase in solvent elution did not affect recoveries positively and caused a high background in chromatograms. Thus, final conditions were 1 mL of sample, 1 g C18 and 8 mL of ethyl acetate.  相似文献   

15.
《Analytical letters》2012,45(12):2521-2530
ABSTRACT

A GC-MS study was carried out to identify the decay products of methyl parathion in water, soil and rooted vegetable (radish) at different time intervals. The water (pH 5.5 and 8.0), soil (pH 7.5) and radish samples collected after the first half life shows the presence of O,O dimethyl O-p-nitro-2 or 3-hydroxyphenyl phosphoorothioate which persists upto the 30th day in the alkaline water and soil samples. However, in acidic water methyl parathion is oxidized to give methylparaoxon.

Radish samples show the presence of two other products. These are identified as O,O-dimethyl o-p-aminophenyl -phosphoorothioate and O,O-dimethylo-p-hydroxyphenyl phosphoorothioate. The study indicates that the half life of methyl parathion in different media is nearly the same but its metabolites are not identical.  相似文献   

16.
A simple and sensitive method using high-performance liquid chromatography/ mass spectrometry (LC/MS) was developed and validated for simultaneous determination of 5 benzoylurea insecticides-diflubenzuron, triflumuron, teflubenzuron, lufenuron, and flufenoxuron-in tomatoes. Residues were successfully separated on a C18 column by methanol-water isocratic elution. Detection was carried out by an ultraviolet diode array detector (UV-DAD) coupled with a quadrupole mass spectrometer, using atmospheric pressure chemical ionization (APCI) in negative-ion mode. The main ions were the deprotonated molecules [M-H]- for triflumuron, and the anions formed by elimination of hydrofluoric acid [M-H-HF]- for diflubenzuron and flufenoxuron, and [M-2H-HF] for lufenuron and teflubenzuron. The calibration plots were linear for both detectors over the range 0.05 to 10 microg/mL, and the method presented good quality parameters. The limits of detection for standard solutions were 0.008-0.01 mg/L (equivalent to 0.08-0.1 ng injected) for both detectors, and the limits of quantification (LOQs) were approximately 10 times lower than national maximum residue levels (MRLs). Depending on the compound and the detector, the LOQ values ranged from 0.2 to 0.4 ng injected. The optimum LC-UV-DAD/APCI-MS conditions were applied to the analysis of benzoylureas in tomatoes. The obtained recoveries from fortified tomato samples (50 g), extracted with ethyl acetate and purified by solid-phase extraction on silica sorbent, were 88-100 and 92.9-105% for the UV-DAD and MS detectors, respectively, with precision values (relative standard deviations) of 2.9-11 and 3.7-14%, respectively. The method was applied to 12 tomato samples from local markets, and diflubenzuron and lufenuron were detected in only one sample at concentrations lower than the MRLs. The results indicate that the developed LC/MS method is accurate, precise, and sensitive for quantitative and qualitative analysis at low levels of benzoylureas required by legislation.  相似文献   

17.
Dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography and mass spectrometry (GC-MS) was applied to the determination of six organophosphorous pesticides (OPPs) in water samples. The analytes included in this study were prophos, diazinon, chlorpyrifos methyl, methyl parathion, fenchlorphos and chlorpyrifos. Several extraction and dispersion solvents were tested for dispersive liquid-liquid microextraction of these analytes and the best results were obtained using chloroform as extraction solvent and 2-propanol as dispersion solvent. Calibration curves of the analytes in water samples were constructed in the concentration range from 100 to 1100 ng/L for prophos, diazinon and methyl parathion and in the range from 100 to 1000 ng/L for chlorpyrifos methyl, fenchlorphos and chlorpyrifos. Limits of detection (LODs) were in the range of 1.5-9.1 ng/L and limits of quantification (LOQs) were in the range of 5.1-30.3 ng/L, below the maximum admissible level for drinking water. Relative standard deviations (RSDs) were between 6.5 and 10.1% in the concentration range of 100-1000 ng/L. The relative recoveries (%RRs) of tap, well and irrigation water samples fortified at 800 ng/L were in the range of 46.1-129.4%, with a larger matrix effect being detected in tap water.  相似文献   

18.
The authors describe an inexpensive electrode for the sensitive amperometric determination of the pesticide methyl parathion. A glassy carbon electrode was modified with a nanocomposite consisting of molybdenum disulfide nanosheets (MoS2) and graphene that was prepared via a hydrothermal process. Its morphology, elemental composition, diffraction, impedance and voltammetric characteristics were studied. The modified electrode displays excellent electrocatalytic ability towards methyl parathion, and the reduction peak current, measured typically at ?0.60 V (vs. Ag/AgCl) is related to the concentration of methyl parathion. The effect of concentration, scan rate and solution pH value were optimized. The calibration plot is linear in the 10 nM to 1.9 mM concentration range, with a 3.2 nM detection limit (at a signal-to-noise ratio of 3). The electrode is selective, stable, adequately repeatable and reproducible. The method was successfully applied to the determination of methyl parathion in spiked samples of homogenized apple, kiwi, tomato and cabbage.
Graphical Abstract A reliable and robust methyl parathion sensor has been developed using heterostructured MoS2/graphene. The linear range is 10 nM–1.9 nM and detection limit is 3.2 (±0.8) nM. The method was successful in real sample determination of spiked methyl parathion in food samples such as apple, kiwi, tomato and cabbage.
  相似文献   

19.
《Analytical letters》2012,45(9):1967-1977
Abstract

Organophosphorus pesticides, such as parathion methyl (PTM), fenitrothion (FT), parathion (PT), and isocarbophos (ICP), have sensitive but overlapped voltammetric peaks with peak potentials ?309, ?364, ?317, and ?480 mV, respectively, in Britton‐Robinson buffer of pH 4.8 by application of linear sweep stripping voltammetry (LSSV). In this work, two multivariate calibration methods, partial least squares (both PLS‐1 and PLS‐2), and principal component regression (PCR), were applied to quantitatively resolve the overlapping voltammogram of the mixtures of these four pesticides. The prediction results obtained from a set of independent test samples showed that PLS‐1 method performed better prediction ability than PLS‐2 and PCR methods. The proposed method was successfully applied to the determination of these four pesticides in grain samples after a pre‐extraction step with a solvent of acetone.  相似文献   

20.
Two methods for the analysis of ten organophosphorus insecticides in natural waters using solid phase extraction disks containing C18 and SDB and solid phase microextraction fibers containing polyacrylate (PA) are developed. Bromophos ethyl, bromophos methyl, dichlofenthion, ethion, fenamiphos, fenitrothion, fenthion, malathion, parathion ethyl and parathion methyl were determined by GC/MS and GC/FTD. The SPE-disks require only 1000 mL of sample and provide a method limit of detection in the range of 0.01–0.07 μg/L and recovery rates from 60.7 to 104.1%. The solid phase microextraction (SPME) technique requires 2–5 mL of water sample and provides a method limit of detection in the range of 0.01 to 0.05 μg/L for all detectors and the recoveries compared to distilled water ranged from 86.2 to 119.7%. The proposed methods were applied to the trace level screening determination of insecticides in river water samples originating from different Greek regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号