首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

In this study, the elastic, electronic, optical and thermoelectric properties of CaTiO3 perovskite oxide have been investigated using first-principles calculations. The generalised gradient approximation (GGA) has been employed for evaluating structural and elastic properties, while the modified Becke Johnson functional is used for studying the optical response of this compound. In addition to ground state physical properties, we also investigate the effects of pressure (0, 30, 60, 90 and 120 GPa) on the electronic structure of CaTiO3. The application of pressure from 0 to 90 GPa shows that the indirect band gap (Γ-M) of CaTiO3 increases with increasing pressure and at 120 GPa it spontaneously decreases transforming cubic CaTiO3 to a direct (Γ-Γ) band gap material. The complex dielectric function and some optical parameters are also investigated under the application of pressures. All the calculated optical properties have been found to exhibit a shift to the higher energies with the increase of applied pressure suggesting potential optoelectronic device applications of CaTiO3. The thermoelectric properties of CaTiO3 have been computed at 0 GPa in terms of electrical conductivity, thermal conductivity and Seebeck coefficient.  相似文献   

2.
The electronic band gap of SrSe, in the CsCl-stuctured phase, was measured to 42 GPa via optical absorption studies. The indirect electronic band gap was found to close monotonically with pressure for the range of pressures studied. The change in band gap with respect to pressure, dEgap/dP, was determined to be −6.1(5)×10−3 eV/GPa. By extrapolation of our line fit, we estimate band gap closure to occur at 180(20) GPa.  相似文献   

3.
D.M. Hoat 《Physics letters. A》2019,383(14):1648-1654
In the last years, alkaline-earth based antiperovskite compounds with small semiconductor band gap have been proven to be promising candidate for optoelectronic and thermoelectric applications. In this work, the structural, electronic, optical and thermoelectric properties of Ae3PbS (Ae = Ca, Sr and Ba) compounds have been predicted using first principles calculations based on the full-potential linearized augmented plane-wave (FP-LAPW) method and semiclassical Boltzmann transport theory. Exchange-correlation effect is treated with the generalized gradient approximation with Perdew–Burke–Ernzerhof scheme (GGA-PBE) and Tran–Blaha modified Becke–Johnson exchange potential. The lattice constant of considered materials increases as Ae goes in order from Ca to Ba and the hardness slightly decreases in this order. Ca3PbS and Sr3PbS are semiconductor with direct band gap of 0.199 eV and 0.116 eV, respectively, while Ba3PbS is nearly metallic. Important optical responses of studied antiperovskites are found in the visible and ultraviolet energy range. Finally, the thermoelectric properties including Seebeck coefficient, electrical conductivity, thermal conductivity, power factor and figure of merit are calculated. Obtained results show that Ca3PbS and Sr3PbS could be candidate for applications in thermoelectric generators at low and moderate temperatures due to their high figure of merit values.  相似文献   

4.
The structural, electronic and thermoelectric properties of SrXF3 (X?=?Li, Na, K, Rb) compounds are performed using first principle calculations. The mBJ-GGA method has been considered to obtain accurate band gaps. The present compounds are found to be thermodynamically stable under 0?GPa and 10?GPa. This stability has been determined using the standard enthalypy of formation. The band structures of the compounds display direct band-gap (Γ-Γ). The band gap has slightly increased for almost studied compounds under 10?GPa. The Boltzmann transport calculations are used to calculate and explain the thermoelectric properties as a function of temperature within the range 20–1500?K. The majority charge carriers of SrXF3 compounds are holes rather than electrons. Under 10 GP pressure the SrLiF3 compound is shifted from n-type to p-type doping, whereas SrKF3 and SrRbF3 are shifted from p-type to n-type. SrNaF3 has p-type doping character under 0?GPa and 10?GPa. The Seebeck coeffiecient is found to decrease, whereas σ/τ and S2 σ/τ increase for higher temperature. According to the figure of merit and the high S2 σ/τ values for SrXF3, promising thermoelectric applications are expected for the present compounds.  相似文献   

5.
This paper presents the results of investigating the optical properties of GaSxSe1−x crystals near the fundamental absorption edge at hydrostatic pressure up to 1.2 GPa and T = 300 K.The crystals with x=0; 0.2; 0.25 are shown to be subjected to phase transformations in the investigated pressure range. The values of Pcr (phase transition pressure) and baric coefficients of band gap widths of the investigated crystals in low- and high-pressure phases have been estimated.  相似文献   

6.
ABSTRACT

First-principles total energy calculations have been performed using the full potential linearised augmented plane wave (FP-LAPW) method as implemented in the WIEN2k code based on the density functional theory (DFT) to investigate the Al-doping effects on the structural, electronic and optical properties of AlxIn1-xP ternary alloys in the zinc-blende (ZB) phase. Different approximations of exchange-correlations energy were used such as the local density approximation (LDA), the generalised gradient approximation within parameterisation of Perdew–Burke–Ernzerhof (PBE-GGA), and the Wu-Cohen (WC-GGA). In addition, we have calculated the band structures with high accuracy using the Tran-Blaha modified Becke–Johnson (TB-mBJ) approach. The pressure dependence of the electronic and optical properties of binary AlP, InP compounds and their related ternary alloys AlxIn1-xP were also investigated under hydrostatic pressure for (P?=?0.0, 5.0,10.0, 15.0, 20.0, 25.0?GPa), where it is found that InP compound change from direct to indirect band gap for P?≥?9.16?GPa. Furthermore, we have calculated the thermodynamic properties of InP and AlP binary compounds as well as the AlxIn1-xP solid solutions, where the quasi-harmonic Debye model has been employed to predict the pressure and temperature dependent Gibbs free energy, heat capacity, Debye temperature and entropy.  相似文献   

7.
The indirect energy gap and electrical resistivity of FeS2-pyrite have been measured at high pressures and 300 K using optical absorption spectroscopy and electrical conductivity measurements. Absorption spectra extend to ∼28 GPa, while resistivity is determined to ∼34 GPa. The band gap of FeS2 is indirect throughout this pressure range and decreases linearly with pressure at a rate of −1.13(9)×10−2 eV/GPa. If this linear trend continues, FeS2 is expected to metallize at a pressure of 80(±8) GPa. The logarithm of resistivity also linearly decreases with pressure to 14 GPa with a slope of −0.101(±0.001)/GPa. However, between 14 and 34 GPa, the logarithm of resistivity is nearly constant, with a slope of −0.011(±0.003)/GPa. The measured resistivity of pyrite may be generated predominantly by extrinsic effects.  相似文献   

8.
The First principles study on structural, electronic, Electron Field Gradient (EFG), optical and vibrational properties of tetragonal BaTiO3 have been done in the framework of Density Functional Theory (DFT). Obtained structural properties are in agreement with others, and also the electronic study shows that the tetragonal BaTiO3 has an indirect energy gap (Eg) about 1.864 eV by GGA and 2.6 eV by GGA-mbj at equilibrium state which Eg shifts toward small values by decreasing pressure. By increasing pressure to 31.479 GPa, the EFG decrease for O atom, and increase for Ba and Ti atoms that is a sign to piezoelectric property for tetragonal BaTiO3. The optical parameters were studied under pressure, such as the real and imaginary parts of the dielectric function, Loss function, reflection index, absorption coefficient, conductivity and reflection. Moreover, by applying hydrostatic pressure, the roots of the real part of the dielectric function shift toward higher energies, and the energy loss and absorption peak intensity were reduced. Finally, lattice vibration survey indicates the stability of tetragonal BaTiO3 under pressure.  相似文献   

9.
Abstract

The optical absorption of the diluted magnetic semiconductor Zn1?xCOxSe (x = 0.02) has been measured at room temperature under hydrostatic pressure up to 14GPa in a membrane diamond-anvil cell. We found two absorption features: (i) an absorption structure in the energy range 1.6?1.8eV, with a negligible pressure shift (i.e., 0.45 ± 0.05 meV/GPa) which we have identified as the Co2+(3d7) internal transition 4A2(F)→+4T1(P) and (ii) an onset in the energy range 2?2.7eV which redshifts with pressure (?8.1±0.6meV/GPa). We have attributed such absorption edge to charge transfer between the ZnSe valence band and the Co2+(3d7) levels.  相似文献   

10.
First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.  相似文献   

11.
First principles study of structural, elastic, electronic and optical properties of the cubic perovskite-type BaHfO3 has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated equilibrium lattice is in a reasonable agreement with the available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. A linear pressure dependence of the elastic stiffnesses is found. Band structures show that BaHfO3 is a direct band gap between the occupied O 2p and unoccupied Hf d states. The variation of the gap versus pressure is well fitted to a quadratic function. Furthermore, in order to understand the optical properties of BaHfO3, the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. We have found that O 2p states and Hf 5d states play a major role in the optical transitions as initial and final states, respectively. This is the first quantitative theoretical prediction of the elastic, electronic and optical properties of BaHfO3 compound, and it still awaits experimental confirmation.  相似文献   

12.
The optical properties of polycrystalline lead iodide thin film grown on Corning glass substrate have been investigated by spectroscopic ellipsometry. A structural model is proposed to account for the optical constants of the film and its thickness. The optical properties of the PbI2 layer were modeled using a modified Cauchy dispersion formula. The optical band gap Eg has been calculated based on the absorption coefficient (α) data above the band edge and from the incident photon energy at the maximum index of refraction. The band gap was also measured directly from the plot of the first derivative of the experimental transmission data with respect to the light wavelength around the transition band edge. The band gap was found to be in the range of 2.385±0.010 eV which agrees with the reported experimental values. Urbach's energy tail was observed in the absorption trend below the band edge and was found to be related to Urbach's energy of 0.08 eV.  相似文献   

13.
In this paper, we present a detailed theoretical investigation on the structural, elastic, electronic and optical properties of the perovskite oxides SrThO3 and SrZrO3 by using the pseudo-potential plane wave (PP-PW) method. The computed lattice constants of SrXO3 (X = Th and Zr) are in excellent agreement with the available experimental data. SrThO3 and SrZrO3 are direct (Γ–Γ) and indirect (Γ–R) band gap semiconductors, respectively. Under pressure effect a crossover between the indirect band gap (R–Γ) and the direct band gap (Γ–Γ) curves occurs at about 35 GPa for SrZrO3, resulting in the energy minimum of direct gap (Γ–Γ) for this compound. The covalence in the Zr–O and Th–O bonds arises due to the hybridization between O–p and Zr–d (Th–d) states. Under pressure effect, the threshold energy becomes slightly greater (smaller) for SrZrO3 (SrTO3) for 3.21 (2.28) eV and the main peaks are shifted towards higher energies. Although the positions of all peaks shifted under pressure, they still have the same type as those at zero pressure, with decreasing the intensity of the main peaks.  相似文献   

14.
The optical absorption spectra from bismuth ferrite (BiFeO3) have been studied at high pressures up to 60 GPa in diamond anvil cells. An electronic transition at which the energy of the optical absorption edge decreases sharply from ~1.5 eV to zero has been observed at room temperature in a pressure range of 45–55 GPa. This indirectly indicates a insulator-metal transition. The observed electronic transition correlates with the recently revealed structural and magnetic transitions induced by high pressures in this crystal. The behavior of the optical absorption edge with decreasing the pressure is completely reversible in correlation with the reversibility of the magnetic transition. The “smearing” of the structural transition in pressure is caused by thermal fluctuations between the high-spin state and low-spin state of the Fe3+ ions near the transition.  相似文献   

15.
The ternary semiconducting compound Cu2GeSe3 has been investigated for optical properties with photoacoustic spectroscopy. Optical absorption spectra of Cu2GeSe3 is obtained in the range of 0.76-0.81 eV photon-energy at temperatures between 80 and 300 K. The thermal variation of band gap energy has been examined from the optical absorption spectra at different temperatures. The temperature induced band gap shrinkage has been explained on the basis of electron-phonon interaction. Varshni's empirical relation in conjunction with Vina and Passler model is taken into consideration for data fitting. The Debye temperature was calculated approximately as 240 K. The acoustic phonons with a characteristic temperature as 160 K corresponding to effective mean frequency have been attributed to the thermal variation of the energy gap.  相似文献   

16.
By using first-principles calculations based on HSE06 hybrid functional, the structural, electronic, and optical properties of CuYSe2 as a low cost absorber material have been studied. Our results show that CuYSe2 is a semiconductor with indirect band gap of 1.46 eV and optical band gap of 2.00 eV. Especially, an intermediate band has been found in Ga and In alloyed CuYSe2, respectively, which can be served as a stepping stone to optical absorption on low energy photons. Therefore, Ga and In alloyed CuYSe2 with an intermediate band as a new absorber material have been proposed.  相似文献   

17.
The density functional theory (DFT) calculations of structural, elastic, electronic and optical properties of the cubic antiperovskite AsNMg3 has been reported using the pseudo-potential plane wave method (PP-PW) within the generalized gradient approximation (GGA). The equilibrium lattice, bulk modulus and its pressure derivative have been determined. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline AsNMg3 aggregate. We estimated the Debye temperature of AsNMg3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of AsNMg3 compound, and it still awaits experimental confirmation. Band structure, density of states and pressure coefficients of energy gaps are also given. The fundamental band gap (Γ-Γ) initially increases up to 4 GPa and then decreases as a function of pressure. Furthermore, the dielectric function, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. The all results are compared with the available theoretical and experimental data.  相似文献   

18.
An investigation of structural stabilities, electronic and optical properties of SrF2 under high pressure is conducted using a first-principles calculation based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. Our results predict that the second high-pressure phase of SrF2 is of a Ni2In- type structure, and demonstrate that the sequence of the pressure-induced phase transition of SrF2 is the fluorite structure (Fm3m) to the PbC12-type structure (Pnma), and to the Ni2In-type phase (P63/mmc). The first and second phase transition pressures are 5. 77 and 45.58 GPa, respectively. The energy gap increases initially with pressure in the Fm3m, and begins to decrease in the Pnma phases at 30 GPa. The band gap overlap metallization does not occur up to 210 GPa. The pressure effect on the optical properties is discussed.  相似文献   

19.
The equilibrium lattice constant, the cohesive energy and the electronic properties of light metal hydrides LiXH3 and XLiH3 (X = Be, B or C) with perovskite lattice structures have been investigated by using the pseudopotential plane-wave method. Large energy gap of LiBeH3 indicates that it is insulating, but other investigated hydrides are metallic. The pressure-induced metallization of LiBeH3 is found at about 120 GPa, which is attributed to the increase of Be-p electrons with pressure. The electronegativity of the p electrons of X atom is responsible for the metallicity of the investigated LiXH3 hydrides, but the electronegativity of the s electrons of X atom plays an important role in the metallicity of the investigated XLiH3 hydrides. In order to deeply understand the investigated hydrides, their optical properties have also been investigated. The optical absorption of either LiBeH3 or BeLiH3 has a strong peak at about 5 eV, showing that their optical responses are qualitatively similar. It is also found that the optical responses of other investigated hydrides are stronger than those of LiBeH3 and BeLiH3 in lower energy ranges, especially in the case of CLiH3.  相似文献   

20.
Optical absorption spectra of single crystals of the ferromagnetic semiconductor VBO3 are studied at high pressures up to 70 GPa achieved in a diamond-anvil cell. An electronic transition accompanied by sharp changes in the optical parameters and a decrease in the optical gap from E 0 = 3.02 eV to 2.25 eV is found at the pressure P C ~ 30 GPa. The gap does not disappear in the high-pressure phase and its value becomes typical of semiconductors. This is indicative of a semiconductor-semiconductor transition. The transition to the metallic state may occur at the critical pressure P met ≈ 290 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号