首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
林进义  陆丹  黄维 《高分子科学》2016,34(11):1311-1318
Molecular aggregates in conjugated polymer(CP) solution can propagate into mesoscale morphology of the relevant film and further dominate the optoelectronic property. Herein, we probed the aggregation behavior of poly(9,9-dioctylfluorene-2,7-diyl)(PFO) and studied its influence on the photophysical property in 1,2-dichloroethane(DCE) solution, where the contents of β-phase or-aggregates increased with prolonged aging time. Thereinto, high quality β-film was fabricated from DCE solution with critical aggregate time of 6 min. The film exhibited excellent surface morphology and characteristic emission of β-phase. Meanwhile, films prepared from aged DCE solutions exhibited high crystallinity, which was promising to obtain higher photoluminance efficiency and charge transport ability simultaneously. Therefore, it is significant to get deep insight into the aggregation behavior of CP, which is involved not only with the solution-processing technology of plastic device, but also with the optoelectronic property of CP.  相似文献   

3.
液晶聚合物的单层与Langmuir-Blodgett膜   总被引:1,自引:0,他引:1  
系统研究了手性液晶聚硅氧烷和光致变色液晶聚硅氧烷两个毓的侧链液晶聚合物在空气/水界面的单层行为和Langmuir-Blodgett(LB)膜沉积特性,对LB膜结构与存在的聚集现象进行了系统的表征,并初步探讨了LB膜中液晶聚合物表现的功能性。  相似文献   

4.
设计并合成了2种苝二酰亚胺分子PBI1和PBI2,研究了bay区的苯氧基团邻位甲基取代对分子构型及分子聚集的影响.通过对单晶结构的分析,发现邻位甲基的引入明显影响苝二酰亚胺分子构型,使得4个苯氧基呈中心对称分布.由于甲基的空间位阻效应,有效地减弱了分子间π-π相互作用,从而提高了分子的溶解性与溶液加工成膜性.研究结果表明,在π共轭分子结构中的关键位置引入小的甲基取代基能够显著调控分子的聚集行为,有效减少光电材料分子中非光电活性(增溶性基团)的含量,对光电材料分子的设计合成具有重要的指导意义.  相似文献   

5.
We synthesized dialkoxy-substituted poly[phenylene vinylene]s (dROPPV-1/1, 0.2/1, and 0/1) consisting of two repeating units with different side-chain lengths (methoxy and 3,7-dimethyloctyloxy). These polymers can serve as a model system to clarify roles of aggregates (the sites with ground-state interchain interactions) and the independent chain segments in the well-packed chains (the chain segments that are compactly packed without interaction) in the emission mechanism of conjugated polymers. Due to the packing of polymer chains, films of all of these polymers are accessible to interchain excitations, after which excitons can re-form to result in delayed luminescence. Besides, some chains form aggregates so that the delayed luminescence is no more the ordinary single-chain emission but red-shifted and less structured. Not only the re-formation of these indirect excitons but also the aggregation of chains are facilitated in the polymers with short methoxy side groups, revealing that both packing and aggregation of chain segments require a short spacing between polymer chains. However, the incorporation of other side chains such as the 3,7-dimethyloctyloxy group to dROPPVs is necessary for the formation of aggregates because these long branched side chains can reduce the intrachain order imposed by the short methoxy groups, which accounts for the absence of aggregate emission in the well-studied poly[2,5-dimethoxy-1,4-phenylene vinylene]. This study reveals that the well-packed chains do not necessarily form aggregates. We also show that the photophysical properties and the film morphology of conjugated polymers can be deliberately controlled by fine-tuning of the copolymer compositions, without altering the optical properties of single polymer chains (e.g., as in dilute solutions).  相似文献   

6.
Conjugated polymers are widely applied in optoelectronic devices due to their excellent optoelectronic properties, solution processibility, and intrinsic flexibility. High-performance films could be achieved with joint efforts from both molecular structure and film solid microstructure. Herein, research progress of the relationship between microstructure and electrical/mechanical performance of poly{[N,N'-bis(2-octyldodecyl)-representative of n-type donor-acceptor conjugated polymers, is reviewed. Its strong aggregation in solution is underlined and the methods to tune the degree of aggregation, such as solvent quality, molecular weight, and regioregularity, are compared. A liquid-crystalline behavior is evidenced in highly concentrated solutions during film drying, which favors the formation of highly anisotropic structures. Moreover, alignment techniques and thermal annealing are used to regulate molecular orientation and polymorphism in films. These structure characteristics offer great potential for researchers to handle film performances. Up to now, more attention has been paid to optimize the electrical performance of the devices. Achieving high-performance n-type conjugated polymer films with both superior mechanical and electrical properties is a newly emerging focus.  相似文献   

7.
Stilbenes and compounds containing stilbene units in their structures form the material basis for numerous research projects in photophysics and photochemistry. Moreover, because these compounds are easy to synthesize and are thermally and chemically stable, they are taking on an increasingly prominent role in the area of materials science investigations into optical, electrical, and optoelectronic properties. In accordance with the interdisciplinary nature of such studies, this article aims to provide a bridge extending from molecular theory and photophysical measurements, through preparative applications, to material effects and their potential technical applications.  相似文献   

8.
π‐Conjugated oligomers and polymers consisting of bifuran units are applied in optoelectronic devices, because bifuran units endow such devices with superior properties compared with their thiophene analogs. However, as is true for most furan oligomers, bifuran oligomers suffer from low photostability, which restricts their application. In this work, we present the synthesis and the photophysical and structural characterization of perfluorinated phenyl bifuran ( PFB‐2F ), which displays high photostability, while maintaining strong fluorescence quantum efficiency in both solution and the solid state. X‐Ray crystallography reveals that, unlike its thiophene analog, PFB‐2F has a completely planar backbone, with slip‐stacked packing and short interplanar distances. PFB‐2F crystals display mechanofluorochromic behavior, which renders perfluorophenyl‐substituted oligofurans potential candidates for both stable optoelectronic devices and responsive optical materials.  相似文献   

9.
In order to investigate the explicit optoelectronic variations of the photoluminescent polymer with sterically hindered side chains, three novel alternate polymers (P0, P1, and P2) based on fluorene and carbazole moieties were successfully synthesized through Suzuki coupling reaction. The molecular structures of the polymers were fully characterized by 1H‐NMR, 13C‐NMR, elemental analysis, and gel permeation chromatograph, respectively. The photophysical properties, thermal stability, and energy band gaps of polymers P0, P1, and P2 were further examined through UV–vis absorption, photoluminescent spectra, differential scanning calorimetry, thermogravimetric analysis, and cyclic voltammetry. The experimental results indicated that the polymers took on wide band gaps of about 3.50 eV with deep blue emission in thin solid films. These polymers were found to show a high thermal stability with decomposition temperatures at 5% weight loss of the compounds in the range of 353–416 °C. Blue light‐emitting electroluminescent devices of the most branched polymer P2 with highest light‐emitting efficiency as emitting layers were characterized, which showed obviously improved spectral stabilities with respect to the parent polyfluorene materials. In conclusion, we have established an effective method to improve the spectral stabilities of polyfluorene material by synthesizing the zigzag‐shaped copolymer of fluorene and carbazole with sterically hindered pendant moieties of different molecular sizes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
New electroluminescent polyfluorenevinylenes (PFV) copolymers with carbazole group, CzPFVs, have been synthesized by the GILCH polymerization. The carbazole groups were introduced as pendant to increase the electron rich ability of the copolymers. All CzPFVs exhibited absorption spectra with maximum peaks at around 417 nm. In the PL emission spectra of CzPFVs, maximum peaks around 463 nm and shoulder peaks around 490–500 nm were exhibited. By adjusting the feed ratios of carbazole groups in the CzPFVs, it is possible to have the higher current density and brightness, and the lower turn‐on voltage due to increasing hole injection ability. The maximum luminescence of CzPFV9 was 2003 cd/m2 at 7 V. The introduction of carbazole contents in PFVs can enhance the device performance to result in stable PL and EL spectra with high current density and brightness due to the increased hole injection ability and reduced interchain interaction between polymer backbones. Especially, the 1:1 mixture of CzPFV10 and PVK didn't show aggregation effect in PL spectra even after annealing the thin film at 80 °C up to 60 min, since the interchain interaction among polymer backbones with fluorenevinylene units was reduced. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4407–4419, 2008  相似文献   

11.
Colloidal lead-free perovskite nanocrystals have recently received extensive attention because of their facile synthesis, the outstanding size-tunable optoelectronic properties, and less or no toxicity in their commercial applications. Tin (Sn) has so far led to the most efficient lead-free solar cells, yet showing highly unstable characteristics in ambient conditions. Here, we propose the synthesis of all-inorganic mixture Sn-Ge perovskite nanocrystals, demonstrating the role of Ge2+ in stabilizing Sn2+ cation while enhancing the optical and photophysical properties. The partial replacement of Sn atoms by Ge atoms in the nanostructures effectively fills the high density of Sn vacancies, reducing the surface traps and leading to a longer excitonic lifetime and increased photoluminescence quantum yield. The resultant Sn-Ge nanocrystals-based devices show the highest efficiency of 4.9 %, enhanced by nearly 60 % compared to that of pure Sn nanocrystals-based devices.  相似文献   

12.
The photophysical and electrochemical properties of cyclometallic cationic iridium complexes that also contain bipyridine type ligands have been investigated in this work. The effect on the photophysical properties of the complexes on the presence of aliphatic long chain or branched substitution was analyzed. The complexes show photoluminescence maxima in the green-blue region of the visible spectrum, with acceptable quantum yields and lifetime, showing in this way potentiality to be tested in OLED devices.  相似文献   

13.
A strategy is presented to improve the excited state reactivity of homoleptic copper–bis(diimine) complexes CuL2+ by increasing the steric bulk around CuI whereas preserving their stability. Substituting the phenanthroline at the 2-position by a phenyl group allows the implementation of stabilizing intramolecular π stacking within the copper complex, whereas tethering a branched alkyl chain at the 9-position provides enough steric bulk to rise the excited state energy E00. Two novel complexes are studied and compared to symmetrical models. The impact of breaking the symmetry of phenanthroline ligands on the photophysical properties of the complexes is analyzed and rationalized thanks to a combined theoretical and experimental study. The importance of fine-tuning the steric bulk of the N–N chelate in order to stabilize the coordination sphere is demonstrated. Importantly, the excited state reactivity of the newly developed complexes is improved as demonstrated in the frame of a reductive quenching step, evidencing the relevance of our strategy.  相似文献   

14.
Organic semiconductors with noncovalently conformational locks (OSNCs) are promising building blocks for hole-transporting materials (HTMs). However, lack of satisfied neighboring building blocks negatively impacts the optoelectronic properties of OSNCs-based HTMs and imperils the stability of perovskite solar cells (PSCs). To address this limitation, we introduce the benzothieno[3,2-b]thiophene (BTT) to construct a new OSNC, and the resulting HTM ZS13 shows improved intermolecular charge extraction/transport properties, proper energy level, efficient surface passivation effect. Consequently, the champion devices based on doped ZS13 yield an efficiency of 24.39 % and 20.95 % for aperture areas of 0.1 and 1.01 cm2, respectively. Furthermore, ZS13 shows good thermal stability and the capability of inhibiting I ion migration, thus, leading to enhanced device stability. The success in neighboring-group engineering can triggered a strong interest in developing thienoacene-based OSNCs toward efficient and stable PSCs.  相似文献   

15.
We investigate the effect of broken conjugation on the excited state dynamics of excimers in cyano-substituted phenylene-vinylene polymers. We compare previous studies on the well-characterized poly(2,5,2',5'-tetrahexyloxy-8,7'-dicyano-di-p-phenylene vinylene) (CN-PPV) with poly[oxa-1,4-phenylene-1,2-(1-cyano)-ethenylene-2,5-dioctyloxy-1,4-phenylene-1,2-(2-cyano)-ethenylene-1,4-phenylene] (CN-ether-PPV), in which the conjugation is disrupted by the insertion of an oxygen atom within the polymer backbone. Despite the broken conjugation, the spectroscopic behavior of the two materials is similar, indicating that the cyano group dominates the photophysics in these materials. The emission in CN-ether-PPV is due to a single-chain exciton in solution and due to an interchain excimer in thin film, as previously reported for CN-PPV; however, the excimer absorption and emission in thin film are blueshifted by approximately 0.2 eV relative to CN-PPV, implying that the excimer in CN-ether-PPV is less stable. Furthermore, substitution of an ether group along the chain results in decay times in both solution and film that are twice as long than in CN-PPV due to the broken conjugation which restricts the exciton within a conjugation segment and reduces its access to internal quenching sites. These properties result in a decay time of 14 ns for CN-ether-PPV film, one of the longest decay times observed in a conjugated polymer film. The long lifetime indicates a large exciton diffusion length, making these species particularly vulnerable to quenching by other materials. This work has implications for the design of conjugated polymers for efficient optoelectronic devices, such as photovoltaics.  相似文献   

16.
Ultralong organic phosphorescent materials have invoked considerable attention for their great potential in sensing, data encryption, information anti-counterfeiting and so forth. However, effective ways to achieve highly efficient ultralong organic phosphorescence (UOP) in metal-free organic materials remain a great challenge. Herein, we designed three isomers based on asymmetric triazines with various bromine substituted positions. Impressively, phosphorescence efficiency of p-BrAT in solid state can reach up to 9.7% with a long lifetime of 386 ms, which was one of the highest efficient UOP materials reported so far. Theoretical calculations further demonstrated that para-substitution exhibited the most effective radiative transition for triplet excitons. These results will provide an effective approach to achieving highly efficient UOP materials.  相似文献   

17.
There has been extensive research on the development of organic optoelectronic devices, such as organic light‐emitting diodes, organic field‐effect transistors, and organic solid‐state lasers from various viewpoints, ranging from basic studies to practical applications. As organic materials are used as solids in these devices, the importance of organic chromophores that exhibit intense emissions of visible light in the solid state is greatly increasing in the field of organic electronics. However, highly efficient emission from organic solids is very difficult to attain because most organic emitting materials strongly tend to cause concentration quenching of the luminescence in the condensed phase. Therefore, in order to generate and improve organic optoelectronic devices, it is necessary to design novel chromophores that exhibit superior solid‐state emission performance. This Focus Review covers the recent development of highly emissive organic small molecules whose photoluminescence quantum yields in the solid state have been reported. Following the introduction, the photophysical processes of excited molecules are briefly reviewed. Subsequently, organic solid fluorophores are described with an emphasis on the characteristics of their molecular structures.  相似文献   

18.
One‐dimensional organic structures with well‐oriented π‐aggregation, strong emission, and ease of processability are desirable for optoelectronic waveguiding devices. Herein, a strategy is developed to attain this objective by self‐assembling platinum(II) acetylides into fluorescent supramolecular polymers via cooperative mechanism. The resulting high‐molecular‐weight supramolecular polymers are capable of forming electrospun microfibers with uniform geometry and smooth surface, which enable light propagation with extremely low scattering loss (0.008 dB μm−1). With the elaborate combination of bottom‐up supramolecular polymerization and top‐down electrospinning techniques, this work offers a novel and versatile avenue toward high‐performance optical waveguiding materials.  相似文献   

19.
Azulene is a promising candidate for constructing optoelectronic materials. An effective strategy is presented to obtain high‐performance conjugated polymers by incorporating 2,6‐connected azulene units into the polymeric backbone, and two conjugated copolymers P(TBAzDI‐TPD) and P(TBAzDI‐TFB) were designed and synthesized based on this strategy. They are the first two examples for 2,6‐connected azulene‐based conjugated polymers and exhibit unipolar n‐type transistor performance with an electron mobility of up to 0.42 cm2 V?1 s?1, which is among the highest values for n‐type polymeric semiconductors in bottom‐gate top‐contact organic field‐effect transistors. Preliminary all‐polymer solar cell devices with P(TBAzDI‐TPD) as the electron acceptor and PTB7‐Th as the electron donor display a power conversion efficiency of 1.82 %.  相似文献   

20.
The photophysical, electrochemical, and optoelectronic properties of conjugated systems incorporating dibenzophosphole or phosphole moieties are described. Dibenzophosphole derivatives are not suitable materials for OLEDs due to their weak photoluminescence (PL) in the solid state and the instability of the devices. Variation of the substitution pattern of phospholes and chemical modification of their P atoms afford thermally stable derivatives, which are photo- and electroluminescent. Comparison of the optical properties of solution and thin film of thioxophospholes shows that these compounds do not form aggregates in the solid state. This property, which is also supported by an X-ray diffraction study of three novel derivatives, results in an enhancement of the fluorescence quantum yields in the solid state. In contrast, (phosphole)gold(I) complexes exhibit a broad emission in thin film, which is due to the formation of aggregates. Single- and multilayer OLEDs using these P derivatives as the emissive layer have been fabricated. The emission color of these devices and their performances vary with the nature of the P material. Interestingly, di(2-thienyl)thiooxophosphole is an efficient host for the red dopant DCJTB, and devices using the gold complexes have broad emission spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号