首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly efficient ultralong organic phosphorescence (UOP) based on a series of metal-free triazine luminogens was achieved via subtly structural tailoring of bromine substituted positions.Impressively,p-BrAT in solid state displayed high phosphorescence efficiency up to 9.7% with a long lifetime of 386 ms,which was one of the highest efficient UOP materials reported so far in metal-free compounds.  相似文献   

2.
Organic phosphorescence materials demonstrate potential optoelectronic applications due to their remarkably ultralong organic phosphorescence (UOP) lifetime and abundant optical characteristics prior to the fluorescence materials. For a better insight into the intrinsic relationship among regioisomeric molecules, crystalline interactions, and phosphorescence properties, three crystalline dicarbazol-9-yl pyrazine-based regioisomers with para-, meta-, and ortho-convergent substitutions (p-DCzP, m-DCzP, and o-DCzP) were designed and presented gradually increased UOP lifetimes prolonging from 63.14, 127.93 to 350.46 ms, respectively, due to the regioisomerism effect (RIE) which would be an effective strategy for better understanding of structure-property of UOP materials.  相似文献   

3.
Regioisomerism effect was disclosed on optimizing ultralongorganic phosphorescence life times of three crystalline dicarbazol-9-yl pyrazine-based regioisomers (p-DCzP,m-DCzP,and o-DCzP) with para-,meta-, and ortho-convergent substitutions.It is revealed that regioisomerism effect could be an effective strategy for the deep understanding of UOP materials.  相似文献   

4.
Ultralong organic phosphorescence (UOP) has attracted increasing attention due to its potential applications in optoelectronics, bioelectronics, and security protection. However, achieving UOP with high quantum efficiency (QE) over 20 % is still full of challenges due to intersystem crossing (ISC) and fast non-radiative transitions in organic molecules. Here, we present a novel strategy to enhance the QE of UOP materials by modulating intramolecular halogen bonding via structural isomerism. The QE of CzS2Br reaches up to 52.10 %, which is the highest afterglow efficiency reported so far. The crucial reason for the extraordinary QE is intramolecular halogen bonding, which can not only effectively enhance ISC by promoting spin–orbit coupling, but also greatly confine motions of excited molecules to restrict non-radiative pathways. This work provides a reasonable strategy to develop highly efficient UOP materials for practical applications.  相似文献   

5.
Ultralong organic phosphorescence (UOP) has attracted increasing attention due to its potential applications in optoelectronics, bioelectronics, and security protection. However, achieving UOP with high quantum efficiency (QE) over 20 % is still full of challenges due to intersystem crossing (ISC) and fast non‐radiative transitions in organic molecules. Here, we present a novel strategy to enhance the QE of UOP materials by modulating intramolecular halogen bonding via structural isomerism. The QE of CzS2Br reaches up to 52.10 %, which is the highest afterglow efficiency reported so far. The crucial reason for the extraordinary QE is intramolecular halogen bonding, which can not only effectively enhance ISC by promoting spin–orbit coupling, but also greatly confine motions of excited molecules to restrict non‐radiative pathways. This work provides a reasonable strategy to develop highly efficient UOP materials for practical applications.  相似文献   

6.
The control of the condensed superstructure of light-emitting conjugated polymers(LCPs) is a crucial factor to obtain high performance and stable organic optoelectronic devices.Side-chain engineering strategy is an effective platform to tune inter chain aggregation and photophysical behaviour of LCPs.Herein,we systematically investigated the alkyl-chain branched effecton the conformational transition and photophysical behaviour of polydiarylfluorenes toward efficient blue optoelectronic devices.The branched side chain will improve materials solubility to inhibit interchain aggregation in solution according to DLS and optical analysis,which is useful to obtain high quality film.Therefore,our branched PEODPF,POYDPF pristine film present high luminance efficiency of 36.1% and 39.6%,enhanced about 20%relative to that of PODPF.Compared to the liner-type sides' chain,these branched chains also suppress chain planarization and improve film morphological stability effectively.Interestingly,the branched polymer also had excellent stable amplified spontaneous emission(ASE) behaviour with low threshold(4.72 μJ/cm~2) and a center peak of 465 nm,even thermal annealing at 220 C in the air atmosphere.Therefore,side-chain branched strategy for LCPs is an effective means to control interchain aggregation,film morphology and photophysical property of LCPs.  相似文献   

7.
Ultralong organic phosphorescence (UOP) based on metal‐free porous materials is rarely reported owing to rapid nonradiative transition under ambient conditions. In this study, hydrogen‐bonded organic aromatic frameworks (HOAFs) with different pore sizes were constructed through strong intralayer π–π interactions to enable ultralong phosphorescence in metal‐free porous materials under ambient conditions for the first time. Impressively, yellow UOP with a lifetime of 79.8 ms observed for PhTCz‐1 lasted for several seconds upon ceasing the excitation. For PhTCz‐2 and PhTCz‐3, on account of oxygen‐dependent phosphorescence quenching, UOP could only be visualized in N2, thus demonstrating the potential of phosphorescent porous materials for oxygen sensing. This result not only outlines a principle for the design of new HOFs with high thermal stability, but also expands the scope of metal‐free luminescent materials with the property of UOP.  相似文献   

8.
Amorphous purely organic phosphorescence materials with long‐lived and color‐tunable emission are rare. Herein, we report a concise chemical ionization strategy to endow conventional poly(4‐vinylpyridine) (PVP) derivatives with ultralong organic phosphorescence (UOP) under ambient conditions. After the ionization of 1,4‐butanesultone, the resulting PVP‐S phosphor showed a UOP lifetime of 578.36 ms, which is 525 times longer than that of PVP polymer itself. Remarkably, multicolor UOP emission ranging from blue to red was observed with variation of the excitation wavelength, which has rarely been reported for organic luminescent materials. This finding not only provides a guideline for developing amorphous polymers with UOP properties, but also extends the scope of room‐temperature phosphorescence (RTP) materials for practical applications in photoelectric fields.  相似文献   

9.
Ultralong organic phosphorescence (UOP) of metal-free organic materials has received considerable attention recently owing to their long-lived emission lifetimes, and the fact that they present an attractive alternative to persistent luminescence in inorganic phosphors. Enormous research effort has been devoted on improving UOP performance in metal-free organic phosphors by promoting the intersystem crossing (ISC) process and suppressing the non-radiative decay of triplet state excitons. This minireview summarizes the recent advances in the rational approaches for manipulating the UOP properties of small molecular crystals, such as phosphorescence lifetime, efficiency, and emission colors. Finally, the present challenges and future development of this field are proposed. This review will provide a guideline to rationally design more advanced metal-free organic phosphorescence materials for potential applications.  相似文献   

10.
Smart materials with ultralong phosphorescence are rarely investigated and reported. Herein we report on a series of molecules with unique dynamic ultralong organic phosphorescence (UOP) features, enabled by manipulating intermolecular interactions through UV light irradiation. Our experimental data reveal that prolonged irradiation of single‐component organic phosphors of PCzT, BCzT, and FCzT under ambient conditions can activate UOP with emission lifetimes spanning from 1.8 to 1330 ms. These phosphors can also be deactivated back to their original states with short‐lived phosphorescence by UV irradiation for 3 h at room temperature or through thermal treatment. Additionally, the dynamic UOP was applied successfully for a visual anti‐counterfeiting application. These findings may provide unique insight into dynamic molecular motion for optical processing and expand the scope of smart‐response materials for broader applications.  相似文献   

11.
Provided here is evidence showing that the stacking between triplet chromophores plays a critical role in ultralong organic phosphorescence (UOP) generation within a crystal. By varying the structure of a functional unit, and different on‐off UOP behavior was observed for each structure. Remarkably, 24CPhCz, having the strongest intermolecular interaction between carbazole units exhibited the most impressive UOP with a long lifetime of 1.06 s and a phosphorescence quantum yield of 2.5 %. 34CPhCz showed dual‐emission UOP and thermally activated delayed fluorescence (TADF) with a moderately decreased phosphorescence lifetime of 770 ms, while 35CPhCz only displayed TADF owing to the absence of strong electronic coupling between triplet chromophores. This study provides an explanation for UOP generation in crystal and new guidelines for obtaining UOP materials.  相似文献   

12.
A new type of materials, organic salts in the crystal state, have ultralong organic phosphorescence (UOP) under ambient conditions. The change of cations (NH4+, Na+, or K+) in these phosphors gives access to tunable UOP colors ranging from sky blue to yellow green, along with ultralong emission lifetimes of over 504 ms. Single‐crystal analysis reveals that unique ionic bonding can promote an ordered arrangement of organic salts in crystal state, which then can facilitate molecular aggregation for UOP generation. Additionally, reversible ultralong phosphorescence can be realized through the alternative employment of fuming gases (ammonia and hydrogen chloride), demonstrating its potential as a candidate for visual ammonic or hydrogen chloride gas sensing. The results provide an environmental responsible and practicable synthetic approach to expanding the scope of ultralong organic phosphorescent materials as well as their applications.  相似文献   

13.
In this work, an efficient polymer-based organic afterglow system, which shows reversible photochromism, switchable ultralong organic phosphorescence (UOP), and prominent water and chemical resistance simultaneously, has been developed for the first time. By doping phenoxazine (PXZ) and 10-ethyl-10H-phenoxazine (PXZEt) into epoxy polymers, the resulting PXZ@EP-0.25 % and PXZEt@EP-0.25 % films show unique photoactivated UOP properties, with phosphorescence quantum yields and lifetimes up to 10.8 % and 845 ms, respectively. It is found that the steady-state luminescence and UOP of PXZ@EP-0.25 % are switchable by light irradiation and thermal annealing. Moreover, the doped films can still produce conspicuous UOP after soaking in water, strong acid and base, and organic solvents for more than two weeks, exhibiting outstanding water and chemical resistance. Inspired by these exciting results, the PXZ@EP-0.25 % has been successfully exploited as an erasable transparent film for light printing.  相似文献   

14.
Ultralong organic phosphorescence(UOP) materials have roused considerable attention in the field of photonics and optoelectronics owing to the feature of long-lived emission lifetimes. However, to develop UOP materials with color-tunability is still a formidable challenge. Here, we report a class of UOP materials containing carbonyl, amino or amide groups, exhibiting colortunable persistent luminescence ranging from blue(458 nm) to yellow-green(508 nm) under different UV wavelength excitation. Taken theoretical and experimental results together, we conclude that the excitation dependent color-tunable UOP emission is ascribed to multiple emission centers from single molecular and aggregated states in crystal. Given color-tunable UOP feature, these materials are used to successfully realize visual UV-light detection. This finding not only provides a strategy to design new organic phosphorescent molecules with colorful emission, but also extends the scope of the applications of purely organic phosphorescent materials.  相似文献   

15.
ABSTRACT

The field of room temperature phosphorescence (RTP) from purely organic materials has made rapid strides in recent years primarily due to its tremendous promise in the areas of photovoltaics, photocatalysis, bioimaging, sensing, etc. Although, the RTP properties, at one time, were considered to be exclusive features of organometallic and inorganic phosphors, a great progress in the molecular design coupled with a much better understanding of the triplet state stabilisation has led to the creation of a plethora of organic RTP materials in the current decade. In this focussed review, a special category of organic luminogens which, rather remarkably, exhibit efficient RTP emission in amorphous or fluidic state is discussed. A few selected examples of such ‘non-crystalline’ organic RTP luminogens are highlighted with an emphasis on the basic design principles and the strategies to increment the phosphorescence efficiency.  相似文献   

16.
Room-temperature phosphorescence (RTP) materials have attracted great attention due to their involvement of excited triplet states and comparatively long decay lifetimes. In this short review, recent progress on enhancement of RTP from purely organic materials is summarized. According to the mechanism of phosphorescence emission, two principles are discussed to construct efficient RTP materials: one is promoting intersystem crossing (ISC) efficiency by using aromatic carbonyl, heavyatom, or/and heterocycle/heteroatom containing compounds; the other is suppressing intramolecular motion and intermolecular collision which can quench excited triplet states, including embedding phosphors into polymers and packing them tightly in crystals. With aforementioned strategies, RTP from purely organic materials was achieved both in fluid and rigid media.  相似文献   

17.
Circularly polarized electroluminescence (CP-EL) is generally produced in organic light-emitting diodes (OLEDs) based on special CP luminescent (CPL) materials, while common achiral luminescent materials are rarely considered to be capable of direct producing CP-EL. Herein, near ultraviolet CPL materials with high photoluminescence quantum yields and good CPL dissymmetry factors are developed, which can induce blue to red CPL for various achiral luminescent materials. Strong near ultraviolet CP-EL with the best external quantum efficiencies (ηexts) of 9.0 % and small efficiency roll-offs are achieved by using them as emitters for CP-OLEDs. By adopting them as hosts or sensitizers, commercially available yellow-orange achiral phosphorescence, thermally activated delayed fluorescence (TADF) and multi-resonance (MR) TADF materials can generate intense CP-EL, with high dissymmetry factors and outstanding ηexts (30.8 %), demonstrating a simple and universal avenue towards efficient CP-EL.  相似文献   

18.
Triarylboranes have recently emerged as a powerful new class of electron acceptors with great potential as optoelectronic materials. The empty p(z) orbital on the boron centre promotes strong charge-transfer transitions, leading to highly luminescent compounds with colors spanning the entire visible spectrum. Due to intense research efforts over the past decade, many examples now exist of organic molecules based on this structural motif. Only recently, however, have transition metal-containing triarylboranes been closely investigated. These compounds are capable of bright luminescence from a triplet excited state, and have been developed as efficient emissive materials for organic light-emitting diodes (OLEDs) as a result. In addition, their long-lived phosphorescence gives these materials potential as highly selective chemical sensors for small anions using time-gated detection, eliminating interference from background fluorescence. The research of the past several years has now led to a better understanding of the impact of the triarylboron group on the photophysical properties of metal complexes, which we expect will provide many opportunities for research into this class of functional phosphorescent materials.  相似文献   

19.
A novel and highly efficient chlorine functionalized iridium(III) complex is designed and synthesized. The complex shows intensive sky-blue phosphorescence (with a peak of 492?nm and a shoulder at 524?nm), high photoluminescence efficiency (0.78) and moderate full width at half maximum (62?nm). The aromatic chlorine introduced into the complex provides the robust chemical stability and effective sky-blue phosphorescence for organic light-emitting diodes (OLEDs). The maximum power efficiency, current efficiency and external quantum efficiency for the complex based OLED are up to 48.46?lm/W, 55.04?cd/A and 18.47%, respectively.  相似文献   

20.
Achieving highly efficient phosphorescence in purely organic luminophors at room temperature remains a major challenge due to slow intersystem crossing (ISC) rates in combination with effective non‐radiative processes in those systems. Most room temperature phosphorescent (RTP) organic materials have O‐ or N‐lone pairs leading to low lying (n, π*) and (π, π*) excited states which accelerate kisc through El‐Sayed's rule. Herein, we report the first persistent RTP with lifetimes up to 0.5 s from simple triarylboranes which have no lone pairs. RTP is only observed in the crystalline state and in highly doped PMMA films which are indicative of aggregation induced emission (AIE). Detailed crystal structure analysis suggested that intermolecular interactions are important for efficient RTP. Furthermore, photophysical studies of the isolated molecules in a frozen glass, in combination with DFT/MRCI calculations, show that (σ, B p)→(π, B p) transitions accelerate the ISC process. This work provides a new approach for the design of RTP materials without (n, π*) transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号