首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Computer-Aided Molecular Design - We applied the COSMO-RS method to predict the partition coefficient logP between water and 1-octanol for 22 small drug like molecules within the...  相似文献   

2.
Journal of Computer-Aided Molecular Design - Two different types of approaches: (a) approaches that combine quantitative structure activity relationships, quantum mechanical electronic structure...  相似文献   

3.
Journal of Computer-Aided Molecular Design - Accurate prediction of lipophilicity—logP—based on molecular structures is a well-established field. Predictions of logP are often used to...  相似文献   

4.
Extended solvent-contact model was applied to the blind prediction of the hydration free energies of 47 organic molecules included in the SAMPL4 data set. To obtain a suitable prediction tool, we constructed a hydration free energy function involving three kinds of atomic parameters. With respect to total 34 atom types introduced to describe all SAMPL4 molecules, 102 atomic parameters were defined and optimized with a standard genetic algorithm in such a way to minimize the difference between the experimental hydration free energies and those calculated with the hydration free energy function. In this parameterization, we used a training set comprising 77 organic molecules with varying sizes and shapes. The estimated hydration free energies for the SAMPL4 molecules compared reasonably well with the experimental results with the associated squared correlation coefficient and root mean square deviation of 0.89 and 1.46 kcal/mol, respectively. Based on the comparative analysis of experimental and computational hydration free energies of the SAMPL4 molecules, the methods for further improvement of the present hydration model are suggested.  相似文献   

5.
The interactions between a molecule and the aqueous environment underpin any process that occurs in solution, from simple chemical reactions to protein–ligand binding to protein aggregation. Fundamental measures of the interaction between molecule and aqueous phase, such as the transfer energy between gas phase and water or the energetic difference between two tautomers of a molecule in solution, remain nontrivial to predict accurately using current computational methods. SAMPL2 represents the third annual blind prediction of transfer energies, and the first time tautomer ratios were included in the challenge. Over 60 sets of predictions were submitted, and each participant also attempted to estimate the error in their predictions, a task that proved difficult for most. The results of this blind assessment of the state of the field for transfer energy and tautomer ratio prediction both indicate where the field is performing well and point out flaws in current methods.  相似文献   

6.
The performance of the extended solvent-contact model has been addressed in the SAMPL5 blind prediction challenge for distribution coefficient (LogD) of drug-like molecules with respect to the cyclohexane/water partitioning system. All the atomic parameters defined for 41 atom types in the solvation free energy function were optimized by operating a standard genetic algorithm with respect to water and cyclohexane solvents. In the parameterizations for cyclohexane, the experimental solvation free energy (ΔG sol ) data of 15 molecules for 1-octanol were combined with those of 77 molecules for cyclohexane to construct a training set because ΔG sol values of the former were unavailable for cyclohexane in publicly accessible databases. Using this hybrid training set, we established the LogD prediction model with the correlation coefficient (R), average error (AE), and root mean square error (RMSE) of 0.55, 1.53, and 3.03, respectively, for the comparison of experimental and computational results for 53 SAMPL5 molecules. The modest accuracy in LogD prediction could be attributed to the incomplete optimization of atomic solvation parameters for cyclohexane. With respect to 31 SAMPL5 molecules containing the atom types for which experimental reference data for ΔG sol were available for both water and cyclohexane, the accuracy in LogD prediction increased remarkably with the R, AE, and RMSE values of 0.82, 0.89, and 1.60, respectively. This significant enhancement in performance stemmed from the better optimization of atomic solvation parameters by limiting the element of training set to the molecules with experimental ΔG sol data for cyclohexane. Due to the simplicity in model building and to low computational cost for parameterizations, the extended solvent-contact model is anticipated to serve as a valuable computational tool for LogD prediction upon the enrichment of experimental ΔG sol data for organic solvents.  相似文献   

7.
Prediction of the free energy of solvation of a small molecule, or its transfer energy, is a necessary step along the path towards calculating the interactions between molecules that occur in an aqueous environment. A set of these transfer energies were gathered from the literature for series of chlorinated molecules with varying numbers of chlorines based on ethane, biphenyl, and dibenzo-p-dioxin. This focused set of molecules were then provided as a blinded challenge to assess the ability of current computational solvation methods to accurately model the interactions between water and increasingly chlorinated compounds. This was presented as part of the SAMPL3 challenge, which represented the fourth iterative blind prediction challenge involving transfer energies. The results of this exercise demonstrate that the field in general has difficulty predicting the transfer energies of more highly chlorinated compounds, and that methods seem to be erring in the same direction.  相似文献   

8.
This work presents a quantum mechanical model for predicting octanol-water partition coefficients of small protein-kinase inhibitor fragments as part of the SAMPL6 LogP Prediction Challenge. The model calculates solvation free energy differences using the M06-2X functional with SMD implicit solvation and the def2-SVP basis set. This model was identified as dqxk4 in the SAMPL6 Challenge and was the third highest performing model in the physical methods category with 0.49 log Root Mean Squared Error (RMSE) for predicting the 11 compounds in SAMPL6 blind prediction set. We also collaboratively investigated the use of empirical models to address model deficiencies for halogenated compounds at minimal additional computational cost. A mixed model consisting of the dqxk4 physical and hdpuj empirical models found improved performance at 0.34 log RMSE on the SAMPL6 dataset. This collaborative mixed model approach shows how empirical models can be leveraged to expediently improve performance in chemical spaces that are difficult for ab initio methods to simulate.  相似文献   

9.
Recent advances in the development of low-cost quantum chemical methods have made the prediction of conformational preferences and physicochemical properties of medium-sized drug-like molecules routinely feasible, with significant potential to advance drug discovery. In the context of the SAMPL6 challenge, macroscopic pKa values were blindly predicted for a set of 24 of such molecules. In this paper we present two similar quantum chemical based approaches based on the high accuracy calculation of standard reaction free energies and the subsequent determination of those pKa values via a linear free energy relationship. Both approaches use extensive conformational sampling and apply hybrid and double-hybrid density functional theory with continuum solvation to calculate free energies. The blindly calculated macroscopic pKa values were in excellent agreement with the experiment.  相似文献   

10.
Journal of Computer-Aided Molecular Design - The alchemical nonequilibrium switching technique was one of several methods in the top tier of performance in the recent SAMPL6 SAMPLing challenge in...  相似文献   

11.

In the context of the recent SAMPL6 SAMPLing challenge (Rizzi et al. 2020 in J Comput Aided Mol Des 34:601–633) aimed at assessing convergence properties and reproducibility of molecular dynamics binding free energy methodologies, we propose a simple explanation of the severe errors observed in the nonequilibrium switch double-system-single-box (NS-DSSB) approach when using unidirectional estimates. At the same time, we suggest a straightforward and minimal modification of the NS-DSSB protocol for obtaining reliable unidirectional estimates for the process where the ligand is decoupled in the bound state and recoupled in the bulk.

  相似文献   

12.
Here, we give an overview of the small molecule hydration portion of the SAMPL4 challenge, which focused on predicting hydration free energies for a series of 47 small molecules. These gas-to-water transfer free energies have in the past proven a valuable test of a variety of computational methods and force fields. Here, in contrast to some previous SAMPL challenges, we find a relatively wide range of methods perform quite well on this test set, with RMS errors in the 1.2 kcal/mol range for several of the best performing methods. Top-performers included a quantum mechanical approach with continuum solvent models and functional group corrections, alchemical molecular dynamics simulations with a classical all-atom force field, and a single-conformation Poisson–Boltzmann approach. While 1.2 kcal/mol is still a significant error, experimental hydration free energies covered a range of nearly 20 kcal/mol, so methods typically showed substantial predictive power. Here, a substantial new focus was on evaluation of error estimates, as predicting when a computational prediction is reliable versus unreliable has considerable practical value. We found, however, that in many cases errors are substantially underestimated, and that typically little effort has been invested in estimating likely error. We believe this is an important area for further research.  相似文献   

13.
For the fifth time I have provided a set of solvation energies (1 M gas to 1 M aqueous) for a SAMPL challenge. In this set there are 23 blind compounds and 30 supplementary compounds of related structure to one of the blind sets, but for which the solvation energy is readily available. The best current values of each compound are presented along with complete documentation of the experimental origins of the solvation energies. The calculations needed to go from reported data to solvation energies are presented, with particular attention to aspects which are new to this set. For some compounds the vapor pressures (VP) were reported for the liquid compound, which is solid at room temperature. To correct from VPsubcooled liquid to VPsublimation requires ΔSfusion, which is only known for mannitol. Estimated values were used for the others, all but one of which were benzene derivatives and expected to have very similar values. The final compound for which ΔSfusion was estimated was menthol, which melts at 42 °C so that modest errors in ΔSfusion will have little effect. It was also necessary to look into the effects of including estimated values of ΔCp on this correction. The approximate sizes of the effects of inclusion of ΔCp in the correction from VPsubcooled liquid to VPsublimation were estimated and it was noted that inclusion of ΔCp invariably makes ΔGS more positive. To extend the set of compounds for which the solvation energy could be calculated we explored the use of boiling point (b.p.) data from Reaxys/Beilstein as a substitute for studies of the VP as a function of temperature. B.p. data are not always reliable so it was necessary to develop a criterion for rejecting outliers. For two compounds (chlorinated guaiacols) it became clear that inclusion represented overreach; for each there were only two independent pressure, temperature points, which is too little for a trustworthy extrapolation. For a number of compounds the extrapolation from lowest temperature at which the VP was reported to 25 °C was long (sometimes over 100°) so that it was necessary to consider whether ΔCp might have significant effects. The problem is that there are no experimental values and possible intramolecular hydrogen bonds make estimation uncertain in some cases. The approximate sizes of the effects of ΔCp were estimated, and it was noted that inclusion of ΔCp in the extrapolation of VP down to room temperature invariably makes ΔGs more negative.  相似文献   

14.
Here, we give an overview of the protein-ligand binding portion of the Statistical Assessment of Modeling of Proteins and Ligands 4 (SAMPL4) challenge, which focused on predicting binding of HIV integrase inhibitors in the catalytic core domain. The challenge encompassed three components—a small “virtual screening” challenge, a binding mode prediction component, and a small affinity prediction component. Here, we give summary results and statistics concerning the performance of all submissions at each of these challenges. Virtual screening was particularly challenging here in part because, in contrast to more typical virtual screening test sets, the inactive compounds were tested because they were thought to be likely binders, so only the very top predictions performed significantly better than random. Pose prediction was also quite challenging, in part because inhibitors in the set bind to three different sites, so even identifying the correct binding site was challenging. Still, the best methods managed low root mean squared deviation predictions in many cases. Here, we give an overview of results, highlight some features of methods which worked particularly well, and refer the interested reader to papers in this issue which describe specific submissions for additional details.  相似文献   

15.
In this work we have developed a hybrid QM and MM approach to predict pKa of small drug-like molecules in explicit solvent. The gas phase free energy of deprotonation is calculated using the M06-2X density functional theory level with Pople basis sets. The solvation free energy difference of the acid and its conjugate base is calculated at MD level using thermodynamic integration. We applied this method to the 24 drug-like molecules in the SAMPL6 blind pKa prediction challenge. We achieved an overall RMSE of 2.4 pKa units in our prediction. Our results show that further optimization of the protocol needs to be done before this method can be used as an alternative approach to the well established approaches of a full quantum level or empirical pKa prediction methods.  相似文献   

16.
17.
18.
Interest in ligand binding kinetics has been growing rapidly, as it is being discovered in more and more systems that ligand residence time is the crucial factor governing drug efficacy. Many enhanced sampling methods have been developed with the goal of predicting ligand binding rates (\(k_{\text {on}}\)) and/or ligand unbinding rates (\(k_{\text {off}}\)) through explicit simulation of ligand binding pathways, and these methods work by very different mechanisms. Although there is not yet a blind challenge for ligand binding kinetics, here we take advantage of experimental measurements and rigorously computed benchmarks to compare estimates of \(K_D\) calculated as the ratio of two rates: \(k_{\text {off}}/k_{\text {on}}\). These rates were determined using a new enhanced sampling method based on the weighted ensemble framework that we call “REVO”: Reweighting of Ensembles by Variance Optimization. This is a further development of the WExplore enhanced sampling method, in which trajectory cloning and merging steps are guided not by the definition of sampling regions, but by maximizing trajectory variance. Here we obtain estimates of \(k_{\text {on}}\) and \(k_{\text {off}}\) that are consistent across multiple simulations, with an average log10-scale standard deviation of 0.28 for on-rates and 0.56 for off-rates, which is well within an order of magnitude and far better than previously observed for previous applications of the WExplore algorithm. Our rank ordering of the three host–guest pairs agrees with the reference calculations, however our predicted \(\Delta G\) values were systematically lower than the reference by an average of 4.2 kcal/mol. Using tree network visualizations of the trajectories in the REVO algorithm, and conformation space networks for each system, we analyze the results of our sampling, and hypothesize sources of discrepancy between our \(K_D\) values and the reference. We also motivate the direct inclusion of \(k_{\text {on}}\) and \(k_{\text {off}}\) challenges in future iterations of SAMPL, to further develop the field of ligand binding kinetics prediction and modeling.  相似文献   

19.
The success of molecular fragment-based design depends critically on the ability to make predictions of binding poses and of affinity ranking for compounds assembled by linking fragments. The SAMPL3 Challenge provides a unique opportunity to evaluate the performance of a state-of-the-art fragment-based design methodology with respect to these requirements. In this article, we present results derived from linking fragments to predict affinity and pose in the SAMPL3 Challenge. The goal is to demonstrate how incorporating different aspects of modeling protein-ligand interactions impact the accuracy of the predictions, including protein dielectric models, charged versus neutral ligands, ΔΔGs solvation energies, and induced conformational stress. The core method is based on annealing of chemical potential in a Grand Canonical Monte Carlo (GC/MC) simulation. By imposing an initially very high chemical potential and then automatically running a sequence of simulations at successively decreasing chemical potentials, the GC/MC simulation efficiently discovers statistical distributions of bound fragment locations and orientations not found reliably without the annealing. This method accounts for configurational entropy, the role of bound water molecules, and results in a prediction of all the locations on the protein that have any affinity for the fragment. Disregarding any of these factors in affinity-rank prediction leads to significantly worse correlation with experimentally-determined free energies of binding. We relate three important conclusions from this challenge as applied to GC/MC: (1) modeling neutral ligands--regardless of the charged state in the active site--produced better affinity ranking than using charged ligands, although, in both cases, the poses were almost exactly overlaid; (2) simulating explicit water molecules in the GC/MC gave better affinity and pose predictions; and (3) applying a ΔΔGs solvation correction further improved the ranking of the neutral ligands. Using the GC/MC method under a variety of parameters in the blinded SAMPL3 Challenge provided important insights to the relevant parameters and boundaries in predicting binding affinities using simulated annealing of chemical potential calculations.  相似文献   

20.
The SAMPL2 hydration free energy blind prediction challenge consisted of a data set of 41 molecules divided into three subsets: explanatory, obscure and investigatory, where experimental hydration free energies were given for the explanatory, withheld for the obscure, and not known for the investigatory molecules. We employed two solvation models for this challenge, a linear interaction energy (LIE) model based on explicit-water molecular dynamics simulations, and the first-shell hydration (FiSH) continuum model previously calibrated to mimic LIE data. On the 23 compounds from the obscure (blind) dataset, the prospectively submitted LIE and FiSH models provided predictions highly correlated with experimental hydration free energy data, with mean-unsigned-errors of 1.69 and 1.71 kcal/mol, respectively. We investigated several parameters that may affect the performance of these models, namely, the solute flexibility for the LIE explicit-solvent model, the solute partial charging method, and the incorporation of the difference in intramolecular energy between gas and solution phases for both models. We extended this analysis to the various chemical classes that can be formed within the SAMPL2 dataset. Our results strengthen previous findings on the excellent accuracy and transferability of the LIE explicit-solvent approach to predict transfer free energies across a wide spectrum of functional classes. Further, the current results on the SAMPL2 test dataset provide additional support for the FiSH continuum model as a fast yet accurate alternative to the LIE explicit-solvent model. Overall, both the LIE explicit-solvent model and the FiSH continuum solvation model show considerable improvement on the SAMPL2 data set over our previous continuum electrostatics-dispersion solvation model used in the SAMPL1 blind challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号