首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chiral electrochemically responsive molecular universal joint (EMUJ) was synthesized by fusing a macrocyclic pillar[6]arene (P[6]) to a ferrocene-based side ring. A single crystal of an enantiopure EMUJ was successfully obtained, which allowed, for the first time, the definitive correlation between the absolute configuration and the circular dichroism spectrum of a P[6] derivative to be determined. The self-inclusion and self-exclusion conformational change of the EMUJ led to a chiroptical inversion of the P[6] moiety, which could be manipulated by both solvents and changes in temperature. The EMUJ also displayed a unique redox-triggered reversible in/out conformational switching, corresponding to an occupation/voidance switching of the P[6] cavity, respectively. This phenomenon is an unprecedented electrochemical manipulation of the capture and release of guest molecules by supramolecular hosts.  相似文献   

2.
A zinc porphyrin‐containing [3]rotaxane A was synthesized through a copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction. Energy donors and acceptor porphyrin were introduced to dibenzo[24]crown‐8 (DB24C8) and dibenzyl ammonium (DBA) units of [3]rotaxane A to understand the intramolecular energy transfer process. Investigations of the photophysical properties of [3]rotaxane A demonstrated that the intramolecular efficient energy transfer readily occurred from the donors on the wheels to the porphyrin center on the axis. The fluorescence of energy donors in the region of 400 to 450 nm was efficiently absorbed by the porphyrin acceptor under irradiation at 345 nm, and finally a red light emission at about 600 nm was achieved. Further investigation indicated that the conformation of [3]rotaxane A was self‐modulated by changing its concentration in CH2Cl2. The triazole groups on the wheel coordinated or uncoordinated to Zn2+ through intramolecular self‐coordination with the change in the concentration of [3]rotaxane A in CH2Cl2. Therefore, this conformational change was reversible in a non‐coordinating solvent such as CH2Cl2 but inhibited in a coordinating solvent such as THF. Such interesting behaviors were rarely observed in porphyrin derivatives. This self‐modulation feature opens up the possibility of controlling molecular conformation by varying concentration.  相似文献   

3.
Two functional main‐chain linear polyrotaxanes, one a covalent polymeric chain that threads through many macrocycles ( P1 ) and the other a poly[n]rotaxane chain that is composed of many repeating rotaxane units ( P2 ), were synthesized by employing strong crown‐ether/ammonium‐based ( DB24C8 / DBA ) host–guest interactions and click chemistry. Energy transfer between the wheel and axle units in both polyrotaxanes was used to provide insight into the conformational information of their resulting polyrotaxanes. Steady‐state and time‐resolved spectroscopy were performed to understand the conformation differences between polymers P1 and P2 in solution. Additional investigations by using dynamic/static light scattering and atomic force microscopy illustrated that polymer P1 was unbending and had a rigid rod‐like structure, whilst polymer P2 was curved and flexible. This flexible topology facilitated the self‐assembly of polymer P2 into relatively large ball‐shaped particles. In addition, the energy transfer between the wheel and axle units was controlled by the addition of specific anions or base. The anion‐induced energy enhancement was attributed to a change in electrostatic interactions between the polymer chains. The base‐driven molecular shuttle broke the DB24C8 / DBA host–guest interactions. These results confirm that both intra‐ and intermolecular electrostatic interactions are crucial for modulating conformational topology, which determines the assembly of polyrotaxanes in solution.  相似文献   

4.
An ultra‐short peptide Boc‐L ‐Phe‐L ‐Lys(Z)‐OMe (Z=carbobenzyloxy) was shown to act as a highly efficient and versatile low molecular weight gelator (LMWG) for a variety of aliphatic and aromatic solvents under sonication. Remarkably, this simple dipeptide is not only able to form coiled fibres but also demonstrates self‐healing and thermal chiroptical switching behaviour. The formation of coiled assemblies was found to be influenced by the nature of the solvent and the presence of an additive. By exploiting these properties it was possible to modulate the macroscopic and microscopic properties of the organogels of this ultra‐short peptide, allowing the formation of highly ordered single‐domain networks of helical fibres with dimeric or alternatively fibre‐bundle morphology. The organogels were characterized by using FTIR, SEM, NMR and circular dichroism (CD) spectroscopy. Interestingly, CD experiments showed that the organogels of Boc‐L ‐Phe‐L ‐Lys(Z)‐OMe in aromatic solvents exhibit thermal chiroptical switching. This behaviour was hypothesized to stem from changes in the morphology of the gel accompanied by conformational transformation of the gelling agent. The fact that such a small peptide can demonstrate hierarchical assemblies and the possibility of controlling the self‐association is rather intriguing. The self‐healing ability, chiroptical switching and more importantly the formation of helical assemblies by Boc‐L ‐Phe‐L ‐Lys(Z)‐OMe under sonication, make this dipeptide an interesting example of the self‐assembly ability of ultra‐short peptides.  相似文献   

5.
The study of an enantiopure bicyclic pillar[5]arene‐based molecular universal joint (MUJ) by single‐crystal X‐ray diffraction allowed for the first time the unequivocal assignment of the absolute configuration of a planar chiral pillar[5]arene by circular dichroism spectroscopy. Crucially, the absolute configuration of the MUJ was switched reversibly by temperature, with an accompanying sign inversion of the anisotropy factor that varied by as much as 0.03, which is the largest value ever reported. Mechanistically, the reversible chirality switching of the MUJ is driven by the threading/dethreading motion of the fused ring and hence is dependent on both the size and nature of the ring and the solvent employed, reflecting the critical balance between the self‐complexation of the ring by pillar[5]arene, the solvation to the excluded ring, and the inclusion of solvent molecules in the cavity.  相似文献   

6.
This article describes the syntheses and solution behavior of model amphiphilic dendritic–linear diblock copolymers that self‐assemble in aqueous solutions into micelles with thermoresponsive shells. The investigated materials are constructed of poly(benzyl ether) monodendrons of the second generation ([G‐2]) or third generation ([G‐3]) and linear poly(N‐isopropylacrylamide) (PNIPAM). [G‐2]‐PNIPAM and [G‐3]‐PNIPAM dendritic–linear diblock copolymers have been prepared by reversible addition–fragmentation transfer (RAFT) polymerizations of N‐isopropylacrylamide with a [G‐2]‐ or [G‐3]‐based RAFT agent, respectively. The critical micelle concentration (cmc) of [G‐3]‐PNIPAM220, determined by surface tensiometry, is 6.3 × 10?6 g/mL, whereas [G‐2]‐PNIPAM235 has a cmc of 1.0 × 10?5 g/mL. Transmission electron microscopy results indicate the presence of spherical micelles in aqueous solutions. The thermoresponsive conformational changes of PNIPAM chains located at the shell of the dendritic–linear diblock copolymer micelles have been thoroughly investigated with a combination of dynamic and static laser light scattering and excimer fluorescence. The thermoresponsive collapse of the PNIPAM shell is a two‐stage process; the first one occurs gradually in the temperature range of 20–29 °C, which is much lower than the lower critical solution temperature of linear PNIPAM homopolymer, followed by the second process, in which the main collapse of PNIPAM chains takes place in the narrow temperature range of 29–31 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1357–1371, 2006  相似文献   

7.
The self‐assembly and characterization of water‐soluble calix[4]arene‐based molecular capsules ( 1?2 ) is reported. The assemblies are the result of ionic interactions between negatively charged calix[4]arenes 1 a and 1 b , functionalized at the upper rim with amino acid moieties, and a positively charged tetraamidiniumcalix[4]arene 2 . The formation of the molecular capsules is studied by 1H NMR spectroscopy, ESI mass spectrometry (ESI‐MS), and isothermal titration calorimetry (ITC). A molecular docking protocol was used to identify potential guest molecules for the self‐assembled capsule 1 a?2 . Experimental guest encapsulation studies indicate that capsule 1 a?2 is an effective host for both charged (N‐methylquinuclidinium cation) and neutral molecules (6‐amino‐2‐methylquinoline) in water.  相似文献   

8.
The aim of this study was to develop an analytical method for the determination the levels of metabolites of benzo[a]pyrene (B[a]P), 3‐hydroxybenzo(a)pyrene (3‐OHB[a]P) and (+)‐anti‐benzo(a)pyrene diol‐epoxide [(+)‐anti‐BPDE, combined with DNA to form adducts], in rat blood and tissues exposed to B[a]P exposure by high‐performance liquid chromatography with fluorescence detection (HPLC/FD), and to investigate the usefulness of 3‐OHB[a]P and (+)‐anti‐BPDE as markers of intragastrical exposure to B[a]P in rats. The levels of 3‐OH‐B[a]P and B[a]P‐tetrol I‐1 released after acid hydrolysis of (+)‐anti‐BPDE in the samples were measured by HPLC/FD. The calibration curves were linear (r2 > 0.9904), and the lower limit of quantification ranged from 0.34 to 0.45 ng/mL for 3‐OHB[a]P and from 0.43 to 0.58 ng/mL for (+)‐anti‐BPDE. The intra‐ and inter‐day stability assay data suggested that the method is accurate and precise. The recoveries of 3‐OHB[a]P and (+)‐anti‐BPDE were in the ranges of 73.6 ± 5.0 to 116.5 ± 6.3% and 73.3 ± 8.5 to 141.2 ± 13.8%, respectively. A positive correlation was found between the concentration of intragastrical B[a]P and the concentrations of 3‐OH‐B[a]P and (+)‐anti‐BPDE in the blood and in most of the tissues studied, except for the brain and kidney, which showed no correlation between B[a]P and 3‐OHB[a]P and between B[a]P and (+)‐anti‐BPDE, respectively. A sensitive, reliable and rapid HPLC/FD was developed and validated for analysis of 3‐OHB[a]P and (+)‐anti‐BPDE in rat blood and tissues. There was a positive correlation between the concentration of 3‐OHB[a]P or (+)‐anti‐BPDE in the blood and the concentration of 3‐OHB[a]P or (+)‐anti‐BPDE in the most other tissues examined. The concentration of 3‐OHB[a]P or (+)‐anti‐BPDE in the blood could be used as an indicator of the concentration of 3‐OHB[a]P or (+)‐anti‐BPDE in the other tissues in response to B[a]P exposure. These results demonstrate that 3‐OHB[a]P and (+)‐anti‐BPDE are potential biomarkers of B[a]P exposure, which would also be useful to assess the carcinogenic risks from B[a]P exposure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The structural complexity of mechanically interlocked molecules are very attractive to chemists owing to the challenges they present. In this article, novel mechanically interlocked molecules with a daisy‐chain‐containing hetero[4]rotaxane motif were efficiently synthesized. In addition, a novel integrative self‐sorting strategy is demonstrated, involving an ABB‐type (A for host, dibenzo‐24‐crown‐8 (DB24C8), and B for guest, ammonium salt sites) monomer and a macrocycle host, benzo‐21‐crown‐7 (B21C7), in which the assembled species in hydrogen‐bonding‐supported solvent only includes a novel daisy‐chain‐containing hetero[4]pseudorotaxane. The found self‐sorting process involves the integrative recognition between B21C7 macrocycles and carefully designed components simultaneously containing two types of secondary ammonium ions and a host molecule, DB24C8 crown ether. The self‐sorting strategy is integrative to undertake self‐recognition behavior to form one single species of pseudorotaxane compared with the previous report. This self‐sorting system can be used for the efficient one‐pot synthesis of a daisy‐chain‐containing hetero[4]rotaxane in a good yield. The structure of hetero[4]rotaxane was confirmed by 1H NMR spectroscopy and high‐resolution electrospray ionization (HR‐ESI) mass spectrometry.  相似文献   

10.
Sterically‐engineered rigid trigonal molecular modules based on 1,3,5‐tri(4‐hydroxyphenyl)benzenes H1 and H2 undergo O‐H???O hydrogen‐bonded self‐assembly into eight‐fold catenated hexagonal (6,3) and two‐fold interpenetrated undulated square (4,4) networks, respectively. In the presence of [18]crown‐6 as a guest, the triphenol H1 is found to self‐assemble into a honeycomb network with hexagonal voids created between three triphenol building blocks. The guest [18]crown‐6 molecules are found to be nicely nested in hexagonal enclosures. The empty spaces within the crowns can be further filled with neutral (MeOH/water, MeOH/MeNO2) or ionic guest species such as KI/KAcAc to furnish novel multicomponent assemblies, that is, guest ? guest ? host, that typify Russian dolls. In contrast, triphenol H2 is found to yield analogous multicomponent molecular crystals in which the guest crown–K+ acts as a spacers in the hydrogen‐bonded self‐assembly that leads to distorted chicken wire networks.  相似文献   

11.
The synthesis of alcohol ester 12 is one of the valuable industrial processes, but it was impeded by poor separating property and recycling ability of the catalytic systems. Herein, four novel DBU‐based basic ionic liquids (DBILs) of [BDBU]IM, [BDBU]OH, [ODBU]IM, [[ODBU]OH were synthesized successfully by introducing the alkyl chains of 1‐bromobutane or 1‐bromooctane to 1,8‐diazabicyclo [5.4.0] undec‐7‐ene (DBU), and then, employing imidazole (IM?) or hydroxide (OH?) as counter ions. The above obtained four ionic liquids were applied in the synthesis of alcohol ester 12 in isobutyraldehyde (IBD)/aqueous media for the first time. Interestingly, after reaction, production of alcohol ester 12 can be self‐separated from ionic liquids/water (ILs/W) catalytic system automatically. Furthermore, the self‐separated ILs/W can be recycled and used in next catalytic reaction for at least 5 times without obvious loss of catalytic performance. In this work, the structure, purity, thermal stability and alkalinity of DBILs were characterized systematically. [BDBU]IM shows high alkalinity and thus enhances yield of 66.17%. From thermo gravimetric analyzer (TGA), [BDBU]IM also exhibits excellent thermal stability. So [BDBU]IM was chosen for the further studying. Furthermore, quantum chemistry is applied to calculate the interaction forces and electron energies of reactants by DFT, and the calculation results illustrate the feasibility of synthetic process of DBILs. The self‐separation strategy of DBILS in this work may open up a new avenue for the clean synthesis of other industrial products.  相似文献   

12.
With a variation in reaction conditions, 1, 4‐bis (2‐(2‐chloroethoxy)ethoxy)‐calix[6]arene (3) and l,3,5‐tris(2‐(2‐chloroethoxy) ethoxy)‐calix [6] arene (4) or 4 and 4‐chloroethoxyethoxy‐calix[6]crown‐3 (5) were selectively synthesized from p‐tert‐butyl‐calix [6] arene and 2‐(2‐chloroethoxy)ethyltosylate. l,3–4,6‐p‐tert‐butylcalix[6]‐bis‐crown‐3 (6) with (u,u,u,d,d,d) conformation and 1,3–4,5‐p‐tert‐butylcalix[6]‐biscrown‐3 (7) with self‐anchored (u,u, u, u, u, d) conformation were synthesized through an intramolecularly ring‐closing condensation of 1, 4‐bis (2‐(2‐chloroethoxy)ethoxy)‐p‐tert‐butyl‐calix[6]arene (3) in 25% and 15% yield, respectively. Using 5 instead of 3, only 7 was obtained in 65% high yield. 6 and 7 show different complexation properties toward alkali metal and ammonium ions.  相似文献   

13.
Luminescent metal nanoclusters (NCs) are emerging as a new class of functional materials that have rich physicochemical properties and wide potential applications. In recent years, it has been found that some metal NCs undergo aggregation‐induced emission (AIE) and an interesting fluorescence‐to‐phosphorescence (F‐P) switching in solutions. However, insights of both the AIE and the F‐P switching remain largely unknown. Now, gelation of water soluble, atomically precise Ag9 NCs is achieved by the addition of antisolvent. Self‐assembly of Ag9 NCs into entangled fibers was confirmed, during which AIE was observed together with an F‐P switching occurring within a narrow time scale. Structural evaluation indicates the fibers are highly ordered. The self‐assembly of Ag9 NCs and their photoluminescent property are thermally reversible, making the metal–organic gels good candidates for luminescent ratiometric thermometers.  相似文献   

14.
A 2‐phosphabicyclo[2.2.2]oct‐7‐ene oxide ( 2 ) and a 2‐phosphabicyclo[2.2.2]octa‐5,7‐diene oxide ( 3 ) with ethyl substituent on the phosphorus atom was synthesized and their fragmentation properties were studied. The phosphabicyclooctadiene oxide ( 3 ) could be utilized in both the UV light‐mediated phosphorylation of simple alcohols and in the thermoinduced phosphorylation of hydroquinone giving an easy access to P‐ethylphosphinates (e.g., 4 and 6 ). The phosphabicyclooctene oxide ( 2 ) was, however, not useful in photoinduced phosphorylations; under such conditions the precursor ( 2 ) underwent dechlorination to afford 5 . © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:196–199, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20093  相似文献   

15.
A novel achiral monomer end‐capped with a phenyl‐[1,3,4]oxadiazolyl group and threaded through β‐cyclodextrin was synthesized to investigate the host‐guest interactions in the inclusion complex. 1H NMR studies revealed that one or two cyclodextrin molecules were threaded onto the synthesized achiral monomer, leading to the formation of a fibrous construction of self‐assembled inclusion complexes. The formation of a self‐assembled inclusion complex was identified using SEM and TEM. The highly ordered alignment of self‐assembled supramolecules was confirmed using polarized optical microscopy. We demonstrate an easy process for the fabrication of nano‐structured self‐assembled inclusion complexes in pyridine/ethanol (1 mL/10 mL) as well as the enhancement of photo‐induced fluorescence via monomers end‐capped with a phenyl‐[1,3,4]oxadiazolyl moiety threaded with β‐cyclodextrins. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3368–3374, 2010  相似文献   

16.
Supramolecular polymers are a class of macromolecules stabilized by weak non‐covalent interactions. These self‐assembled aggregates typically undergo stimuli‐induced reversible assembly and disassembly. They thus hold great promise as so‐called functional materials. In this work, we present the design, synthesis, and responsive behavior of a short supramolecular oligomeric system based on two hetero‐complementary subunits. These “monomers” consist of a tetrathiafulvalene‐functionalized calix[4]pyrrole (TTF‐C[4]P) and a glycol diester‐linked bis‐2,5,7‐trinitrodicyanomethylenefluorene‐4‐carboxylate (TNDCF), respectively. We show that when mixed in organic solvents, such as CHCl3, CH2ClCH2Cl, and methylcyclohexane, supramolecular aggregation takes place to produce short oligomers stabilized by hydrogen bonding and donor–acceptor charge‐transfer (CT) interactions. The self‐associated materials were characterized by 1H NMR and UV/Vis/NIR absorption spectroscopy, as well as by concentration‐ and temperature‐dependent absorption spectroscopy and dynamic light scattering (DLS) analyses of both the monomeric and oligomerized species. The self‐associated system produced from TTF‐C[4]P and TNDCF exhibits a concentration‐dependent aggregation behavior typical of supramolecular polymers. Further support for the proposed self‐assembly came from theoretical calculations. The fluorescence emitting properties of TNDCF are quenched under conditions that promote the formation of supramolecular aggregates containing TTF‐C[4]P and TNDCF. This quenching effect has been utilized as a probe for the detection of substrates in the form of anions (i.e., chloride) and nitroaromatic explosives (i.e., 1,3,5‐trinitrobenzene). Specifically, the addition of these substrates to mixtures of TTF‐C[4]P and TNDCF produced a fluorescence “turn‐on” response.  相似文献   

17.
The detection of layer‐by‐layer self‐assembly multilayer films was carried out using low‐temperature plasma (LTP) mass spectrometry (MS) under ambient conditions. These multilayer films have been prepared on quartz plates through the alternate assembling of oppositely charged 4‐aminothiophenol (4‐ATP) capped Au particles and thioglycolic acid (TGA) capped Ag particles. An LTP probe was used for direct desorption and ionization of chemical components on the films. Without the complicated sample preparation, the structure information of 4‐ATP and TGA on films was studied by LTP‐MS. Characteristic ions of 4‐ATP (M) and TGA (F), including [M]+?, [M‐NH2]+, [M‐HCN‐H]+, and [F + H]+, [F‐H]+, [F‐OH]+, [F‐COOH]+ were recorded by LTP‐MS on the films. However, [M‐CS‐H]+ and [F‐SH]+ could not be observed on the film, which were detected in the neat sample. In addition, the semi‐quantitative analysis of chemical components on monolayer film was carried out, and the amounts of 4‐ATP and TGA on monolayer surface were 45 ng/mm2 and 54 ng/mm2, respectively. This resulted the ionization efficiencies of 72% for 4‐ATP and 54% for TGA. In order to evaluate the reliability of present LTP‐MS, the correlations between this approach and some traditional methods, such as UV–vis spectroscopy, atomic force microscope and X‐ray photoelectron spectroscopy were studied, which resulted the correlation coefficients of higher than 0.9776. The results indicated that this technique can be used for analyzing the films without any pretreatment, which possesses great potential in the studies of self‐assembly multilayer films. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A pillar[5]arene pendant polymer (Poly‐P[5]A) is synthesized via ROMP using Grubb's first‐generation catalyst. GPC analysis of the polymer suggested ~30 pendant pillar[5]arene units in the polymer. Supramolecular polypseudorotaxane assembly is constructed by intermolecularly crosslinking pendant pillar[5]arene units using a bispyridinium guest via host–guest complexation. Formation of the polypseudorotaxane assembly is characterized by 1D/2D NMR techniques and DLS analysis. Moreover, anion‐responsiveness of the polypseudorotaxane assembly is demonstrated by 1H NMR spectroscopic analysis using chloride anion as external stimulus. Scanning electron microscopic analysis of the poly‐P[5]A showed breath‐figure assembly and upon crosslinking with G.2PF6 the polymer self‐assemble to give a supramolecular polymer network. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1508–1515  相似文献   

19.
The self‐assembly of a metallo‐supramolecular PS‐[Ru]‐PEO block copolymer, where ‐[Ru]‐ is a bis‐2,2′:6′,2″‐terpyridine‐ruthenium(II) complex, in thin films was investigated. Metallo‐supramolecular copolymers exhibit a different behavior as compared to their covalent counterparts. The presence of the charged complex at the junction of the two blocks has a strong impact on the self‐assembly, effecting the orientation of the cylinders and ordering process. Poly(ethylene oxide) cylinders oriented normal to the film surface are obtained directly regardless of the experimental conditions over a wide range of thicknesses. Exposure to polar solvent vapors can be used to improve the lateral ordering of the cylindrical microdomains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4719–4724, 2008  相似文献   

20.
The synthesis of a pH‐sensitive two‐station [1]rotaxane molecular switch by self‐entanglement of a non‐interlocked hermaphrodite molecule, containing an anilinium and triazole moieties, is reported. The anilinium was chosen as the best template for the macrocycle benzometaphenylene[25]crown‐8 (BMP25C8) and allowed the self‐entanglement of the molecule. The equilibrium between the hermaphrodite molecule and the pseudo[1]rotaxane was studied by 1H NMR spectroscopy: the best conditions of self‐entanglement were found in the less polar solvent CD2Cl2 and at high dilution. The triazole moiety was then benzylated to afford a benzyltriazolium moiety, which then played a dual role. On one hand, it acts as a bulky gate to trap the BMP25C8, thus to avoid any self‐disentanglement of the molecular architecture. On another hand, it acts as a second molecular station for the macrocycle. At acidic pH, the BMP25C8 resides around the best anilinium molecular station, displaying the lasso [1]rotaxane in a loosened conformation. The deprotonation of the anilinium molecular station triggers the shuttling of the BMP25C8 around the triazolium moiety, therefore tightening the lasso.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号