首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review provided a systematic overview of the recent researches on the small-molecule fluorescent probes for recognition various organic phosphate biomolecules (OPBs) including nucleotides, NAD(P)H, FAD/FMN and PS. The general strategies and the recognition mechanisms for these OPBs probe designs were described and emphasized to inspire the better design for fluorescent probes in the future.  相似文献   

2.
The specific detection of cysteine (Cys) over homocysteine (Hcy), glutathione (GSH) and other amino acids is of great significance for studying its biological functions as well as for the diagnosis of related diseases. Chloroacetyl group was often used as a reaction site for cysteine fluorescent probes for its sensitivity and selectivity. However, high background fluorescence and low stability are common problems encountered by such probes. Here, four chloroacetyl group based fluorescent probes (C1, C2, C3, and H4) was synthesized for a comparative study. We found that the inefficient quenching ability of chloroacetyl group turned into an advantage when connected with a ratiometric fluorophore. With the modification of chloroacetyl group, probe H4 displayed excellent ratiometric property and great selectivity for Cys, the stability was also improved. Additionally, the probe was successfully applied for quantitative detection of Cys in fetal bovine serum and real-time imaging in living HeLa cells with low toxicity.  相似文献   

3.
《中国化学快报》2020,31(11):2980-2984
Fluorescent probes have been widely employed in biological imaging and sensing. However, it is always a challenge to design probes with high sensitivity. In this work, based on rhodamine skeleton, we developed a general strategy to construct sensitivity-enhanced fluorescent probe with the help of theoretical calculation for the first time. As a proof of concept, we synthesized a series of HOCl probes. Experiment results showed that with the C-9 of pyronin moiety of rhodamine stabilized by an electron donor group, probe DQF-S exhibited an importantly enhanced sensitivity (LOD: 0.2 nmol/L) towards HOCl together with fast response time (<10 s). Moreover, due to the breaking symmetrical electron distribution by another electron donor group, the novel rhodamine probe DQF-S displayed a far red to near-infrared emission (>650 nm) and large Stokes shift. Bioimaging studies indicated that DQF-S can not only effectively detect basal HOCl in various types of cells, but also be successfully applied to image tumor tissue in vivo. These results demonstrate the potential of our design as a useful strategy to develop excellent fluorescent probes for bioimaging.  相似文献   

4.
《中国化学快报》2019,30(9):1627-1630
With d-proline as the reducing and capping agent, fluorescent gold nanoclusters were rapidly prepared (d-Pro@AuNCs) within 10 min at 100 °C. In the present of gold nanoparticles, the fluorescence of d-Pro@AuNCs was remarkably quenched. Interestingly, based on the electrostatic interaction between anticancer drug Raltitrexed and gold nanoparticles induced fluorescence “turn-on” principle, a high selective assay for detection of Raltitrexed was established with the probe associating the fluorescence emission at 435 nm. The fluorescence intensity of d-Pro@AuNCs linearly correlated with the concentration of Raltitrexed in the range from 5.0 μmol/L to 40.0 μmol/L (R2 = 0.999) and the limit of detection was 1.9 μmol/L. Further, after Raltitrexed was abdominal injected in rats, a metabolic approach was constructed with the prepared fluorescent probe. It showed great potential of AuNCs-based sensing probes for application in analysis of serum anticancer drugs.  相似文献   

5.
《中国化学快报》2020,31(11):2913-2916
Palladium(0) as one of the vital transition metals, is employed in numerous industries, such as drug synthesis, aerospace high-tech field and automobile industry. When the Pd(0) enter into the body, it will bind with thiol-containing amino acids, DNA, RNA, and other biomolecules damaging to human health. Thus, developing a novel tool for monitoring and imaging of Pd(0) in vivo is very urgent. In the work, based on a intramolecular charge transfer (ICT) mechanism a two-photon fluorescent probe NIPd had been designed and synthesized for the recognition Pd(0). In vitro experiments data displayed that probe NIPd exhibited a 13-fold fluorescent increase for Pd(0) in 30 min in the aqueous solution with a detection limit of 16 nmol/L. It also showed the outstanding selectivity and antijamming performance. More importantly, NIPd could be served as a two-photon fluorescent probe for real-time monitoring Pd(0) in living cells and mice.  相似文献   

6.
A fluorescent probe for protease sensing and based on the “covalent-assembly” principle is reported. The basic rational for this unusual class of chemodosimeters proposed by the Anslyn and Yang groups entails the synthesis of non-fluorophore caged precursors full-stable and reactive towards the targeted analyte. Unlike the first generation of protease-sensitive “covalent-assembly” type probes recently published by ourselves (Org. Biomol. Chem.2017, 15, 2575–2584), the availability of dicyanomethylidenyl and enzyme-labile phenylacetamide moieties within the core structure of mixed bis-aryl ether 2 enables its rapid conversion into a fluorescent pyronin dye at physiological pH and upon activation with penicillin G acylase (PGA). This is real progress towards the practical implementation of this ingenious activation mechanism to the detection of enzymes in their native environment (in cellulo or in vivo).  相似文献   

7.
The detection and stabilization of G-quadruplexes (G4s) in living systems is of enormous applicability in the fields of chemical biology and therapeutic materials. Whereas DNA serves as a genetic material, RNA functions in the regulation and expression of genetic materials. Even there is various report on fluorescent probes invitro G4s recognitions, in this review we highlighted briefly, in-cellulo identification of G4s along with conventional methods principles. Although there are varieties of G4-forming sequences in the genome, targeting a specific type (topology) in living cells is highly challenging because of the high instability of G4s in cellular/subcellular systems. In contrast, several reports describe the in vitro identification of G4s, along with in-cell demonstrations, using efficient fluorescent probes, through either intrinsic or extrinsic approaches. In the intrinsic mode, the sensing results from the use of highly selective synthetic fluorescent oligonucleotides or proteins (a labeling approach). In the extrinsic mode, quencher-free small molecular probes are used to recognize specific G4s under physiological conditions. Because of their robustness, simplicity, and ease of handling, this review describes recent trends in the use of blue/green, green, red, and near-infrared (NIR) fluorescent probes for the recognition of G4s in live cells-and, particularly, those approaches employing quencher-free probes. Also highlighted are a few labeled probes, and their in cellulo localizations, which were accomplished upon the formation of non-canonical G4s under specified conditions and supplemented by exogenous G4-forming components, without harnessing cellular physiological conditions.  相似文献   

8.
Zhang H  Wang M  Gao Q  Qi H  Zhang C 《Talanta》2011,84(3):771-776
A novel fluorescent method for the detection of single nucleotide polymorphism (SNP) was developed using a hairpin DNA containing nucleotide base analog pyrrolo-deoxycytidine (P-dC) as a fluorescent probe. This fluorescent probe was designed by incorporating a fluorescent P-dC into a stem of the hairpin DNA, whose sequence of the loop moiety complemented the target single strand DNA (ss-DNA). In the absence of the target ss-DNA, the fluorescent probe stays a closed configuration in which the P-dC is located in the double strand stem of the fluorescent probe, such that there is weak fluorescence, attributed to a more efficient stacking and collisional quenching of neighboring bases. In the presence of target ss-DNA, upon hybridizing the ss-DNA to the loop moiety, a stem-loop of the fluorescent probe is opened and the P-dC is located in the ss-DNA, thus resulting in strong fluorescence. The effective discrimination of the SNP, including single base mismatch ss-DNA (A, T, G) and double mismatch DNA (C, C), against perfect complementary ss-DNA was achieved by increased fluorescence intensity, and verified by thermal denaturation and circular dichroism spectroscopy. Relative fluorescence intensity had a linear relationship with the concentration of perfect complementary ss-DNA and ranged from 50 nM to 3.0 μM. The linear regression equation was F/F0 = 2.73 C (μM) + 1.14 (R = 0.9961) and the detection limit of perfect complementary ss-DNA was 16 nM (S/N = 3). This study demonstrates that a hairpin DNA containing nucleotide base analog P-dC is a promising fluorescent probe for the effective discrimination of SNP and for highly sensitive detection of perfect complementary DNA.  相似文献   

9.
Precise quantification of trace components in whole blood via fluorescence is of great significance. However, the applicability of current fluorescent probes in whole blood is largely hindered by the strong blood autofluorescence. Here, we proposed a blood autofluorescence-suppressed sensing strategy to develop an activable fluorescent probe for quantification of trace analyte in whole blood. Based on inner filter effect, by screening fluorophores whose absorption overlapped with the emission of blood, a redshift BODIPY quencher with an absorption wavelength ranging from 600–700 nm was selected for its superior quenching efficiency and high brightness. Two 7-nitrobenzo[c] [1,2,5] oxadiazole ether groups were introduced onto the BODIPY skeleton for quenching its fluorescence and the response of H2S, a gas signal molecule that can hardly be quantified because of its low concentration in whole blood. Such detection system shows a pretty low background signal and high signal-to-back ratio, the probe thus achieved the accurate quantification of endogenous H2S in 20-fold dilution of whole blood samples, which is the first attempt of quantifying endogenous H2S in whole blood. Moreover, this autofluorescence-suppressed sensing strategy could be expanded to other trace analytes detection in whole blood, which may accelerate the application of fluorescent probes in clinical blood test.  相似文献   

10.
徐芹芹  刘兆强  王华子  武海 《化学通报》2021,84(11):1155-1162
氰化物极易与细胞色素氧化酶键合,抑制电子转移、导致组织缺氧,从而显示较强的毒性。荧光化学传感器作为简易、灵敏且可视化的方法广泛应用于氰化物的检测。本文对荧光探针在氰化物检测中的应用进行综述,概述了氰化物的毒性机制和荧光探针对氰化物的响应机理。同时,本文总结了荧光探针在水体、食品和生物组织中对氰化物的检测及生物成像中的应用,并对荧光探针在结构设计中如何提高生物兼容性和靶向性等进行了展望,以期为光化学探针分子的设计及应用提供理论与研究依据。  相似文献   

11.
Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays intriguing biological roles. To study the biological role of H2S, efficient fluorescent probes are in great demand. For imaging of H2S in deep-tissue, a two-photon probe that emits in the red wavelength region is of choice to avoid the autofluorescence from intrinsic biomolecules. Here, we disclose such a probe, which, developed based on an acetyl benzocoumarin fluorophore, can be excited at 900?nm under two-photon excitation and emit in the red region. The probe shows high reactivity, selectivity, and sensitivity in in vitro assays. Two-photon microscopic imaging of H2S in HeLa cells aided by the probe demonstrates that it is potentially useful to study H2S level changes in cells and tissues influenced by external stimuli.  相似文献   

12.
This review summarized fluorescent probes for breast cancer imaging according to different biomarkers probes recognized.  相似文献   

13.
Recently, the construction of multiple analytes responsive fluorescent probes with distinct emission signals has attracted widely attention. Thus, we have designed and synthesized a new fluorescent probe, 2-(2-hydroxyphenyl)benzothiazole dye skeleton (HBT-1), for the detection of sulfur dioxide and hydrazine. Significant fluorescence enhancements in two distinct emission bands (λem?=?464?nm and 498?nm) were generated when HBT-1 reacted with sulfur dioxide derivatives or hydrazine, respectively. Furthermore, the probe HBT-1 response can be saturated surpurisingly at the low concentration (100?μM), shorter reaction time for sulfur dioxide derivatives, while a longer reaction time and greater concentration (400?μM) for hydrazine. In other words, the probe HBT-1 can detect sulfur dioxide derivatives without hydrazine interference at low analyte concentrations.  相似文献   

14.
Herein, we report the synthesis of two indolium probes 1 and 2 based on anthracene and pyrene derivatives and their interactions with various anions. Of these probes, the pyrene conjugate 2 acts as a dual colorimetric and fluorescent chemodosimeter for the selective and sensitive detection of cyanide ions. The detection limit of probe 2 for CN? ions was found to be 10 ppb (30 nM ). The nature of interaction has been thoroughly studied through various techniques such as 1H NMR and IR spectroscopy, HRMS, and isothermal calorimetric (ITC) studies. These studies confirm that probe 2 forms a 1,2‐adduct in the presence of CN? ions. Kinetic studies using probe 2 showed the completion of the reaction within 15 s with a rate constant of k′=0.522±0.063 s?1. This probe can be coated on a solid surface (dipstick) and a polymer matrix for the on‐site analysis and quantification of endogenous cyanide ions in natural sources such as Indian almonds.  相似文献   

15.
《中国化学快报》2023,34(3):107786
Despite the rapid development of fluorescence detection modalities for disease diagnosis, novel fluorescent molecules and probes still face with tremendous pressure to transform before employing such fluorescent tools in the clinic. Impressively, the fluorescent probes based on the traditional fluorescent dye are expected to accelerate the transformation process. Herein, methylene blue is requisitioned to design the GSH responsive probe MB-SS-CPT elaborately. The as-synthesized MB-SS-CPT provides a dramatic optical advantage for GSH detection in vitro, cell fluorescence imaging, in vivo imaging, and antitumor therapy.  相似文献   

16.
Na Li 《Talanta》2009,79(2):327-153
Salicylaldehyde hydrazones of 1 and 2 were synthesized and their potential as fluorescent probes for zinc ion was investigated in this paper. Both of the probes were found to show fluorescence change upon binding with Zn2+ in aqueous solutions, with good selectivity to Zn2+ over other metal ions such as alkali/alkali earth metal ions and heavy metal ions of Pb2+, Cd2+ and Hg2+. They showed 1:2 metal-to-ligand ratio when their Zn2+ complex was formed. By introducing pyrene as fluorophore, 2 showed interesting ratiometric response to Zn2+. Under optimal condition, 2 exhibited a linear range of 0-5.0 μM and detection limit of 0.08 μM Zn2+ in aqueous buffer, respectively. The detection of Zn2+ in drinking water samples using 2 as fluorescent probe was successful.  相似文献   

17.
Here we present the first examples of fluorescent and colorimetric probes for microscopic TBT imaging. The fluorescent probes are highly selective and sensitive to TBT and have successfully been applied for imaging of TBT in bacterial Rhodobacter ferrooxidans sp. strain SW2 cell-EPS-mineral aggregates and in cell suspensions of the marine cyanobacterium Synechococcus PCC 7002 by using confocal laser scanning microscopy.  相似文献   

18.
SNAP-tag technology is a revolutionary protein labeling technology employing in various biological studies. Since low signal/noise ratio and severe overlap between the FRET donors/acceptors often occurred in applying present fluorescent probes and thus limited the further applications, development of new fluorescent probes with excellent fluorescent properties is still of request by today’s SNAP-tag technology. In this paper, a number of SNAP-tag protein probes have been developed by incorporating a novel pyrrolocoumarin fluorophore recently developed by our group. Examination of these novel synthetic compounds shows all these materials possess satisfactory fluorescent properties. Among these, probe 7 exhibits the most excellent characters, and its quantum yield, maximum emission wavelength and Stocks shift reach to 0.44, 534 nm and 112 nm, respectively. Further analysis of structure-property relationship indicates that the probes with a longer C3-substituted alkyl (such as pentyl) give stronger fluorescence.  相似文献   

19.
Endogenous gaseous signaling molecules including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) have been demonstrated to perform significant physiological and pharmacological functions and are associated with various diseases in biological systems. In order to obtain a deeper insight into their roles and mechanisms of action, it is desirable to develop novel techniques for effectively detecting gaseous signaling molecules. Small-molecule fluorescent probes have been proven to be a powerful approach for the detection and imaging of biological messengers by virtue of their non-invasiveness, high selectivity, and real-time in situ detection capability. Based on the intrinsic properties of gaseous signaling molecules, numerous fluorescent probes have been constructed to satisfy various demands. In this perspective, we summarize the recent advances in the field of fluorescent probes for the detection of NO, CO and H2S and illustrate the design strategies and application examples of these probes. Moreover, we also emphasize the challenges and development directions of gasotransmitter-responsive fluorescent probes, hoping to provide a general implication for future research.

This perspective article aims to introduce the design principles and recognition strategies of small-molecule fluorescent probes which are applied for the detection of gas signaling molecules including NO, CO and H2S in biological systems.  相似文献   

20.
We designed and synthesized a series of BODIPY based probes with fast and distinct ratiometric responsiveness for discriminative detection of GSH from Cys and Hcy. The discriminative detection is based on the different products obtained by the SNAr between probes and thiol-containing amino acids. The amino group of the obtained thioether from the reaction with Cys or Hcy but not GSH would trigger an intramolecular nucleophilic substitution through five- or six-membered cyclic transition state, finally yielding an amino substituted derivative. To achieve highly discriminative detection and fast response, a series of structure modifications and improvements have been made by elongating the π-conjugation and introducing electron withdrawing groups, finally affording probe BOD-DBNPF with optimized responsiveness and selectivity. Importantly, BOD-DBNPF was successfully used for the selective detection of GSH from Cys with distinct fluorescent ratiometric responses in living HeLa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号