共查询到20条相似文献,搜索用时 15 毫秒
1.
R. Ediati W. Aulia B.A. Nikmatin A.R.P. Hidayat U.M. Fitriana C. Muarifah D.O. Sulistiono F. Martak D. Prasetyoko 《Materials Today Chemistry》2021
UiO-66 and chitosan/UiO-66 composites were successfully synthesized by varying the mass addition of chitosan which were 0%, 2.5%, 5%, 10%, and 20% of the mass of UiO-66, denoted as UiO-66, Cs(2.5)/UiO-66, Cs(5)/UiO-66, Cs(10)/UiO-66, and Cs(20)/UiO-66, respectively. UiO-66 was modified with chitosan using the impregnation process. The X-ray diffraction patterns of the synthesized materials showed characteristic peaks at 2θ of 7.25° and 8.39°, which matched to that of the reported UiO-66. In addition, the Fourier transform infrared spectroscopy spectra of the materials showed absorption bands at the same wavenumber as UiO-66 and chitosan previously reported. The surface morphology of UiO-66 observed from scanning electron microscopy images was in the form of agglomerated small cube particles, where the smaller particles were observed for Cs(10)/UiO-66. From the N2 adsorption isotherms, it was found that the Brunauer-Emmett-Teller surface areas of UiO-66, Cs(5)/UiO-66, and Cs(10)/UiO-66 materials were 825.7 m2/g, 835.4 m2/g, and 882.2 m2/g, respectively. The results of the study on adsorption of methyl orange in aqueous solutions showed that Cs(5)/UiO-66 had the highest adsorption capacity of 370.37 mg/g and followed the pseudo–second-order adsorption kinetic with a Langmuir isotherm model. 相似文献
2.
Vishal Dutta Sheetal Sharma Pankaj Raizada Ahmad Hosseini-Bandegharaei Vinod Kumar Gupta Pardeep Singh 《Journal of Saudi Chemical Society》2019,23(8):1119-1136
In previous years, cobalt ferrite has gained huge consideration in the field of semiconductor photocatalysis for waste water treatment. Cobalt ferrite and its derivatives own tunable magnetic properties which results in higher absorption capability in comparison with other photocatalyst semiconductors. In the current review, a brief overview of CoFe2O4 as a semiconductor photocatalyst is presented and ferromagnetic behaviour of CoFe2O4 is also discussed. Few drawbacks such as agglomeration, photocorrosion and recombination rate of electrons-holes are also discussed. For the enhancement of photocatalytic action of cobalt ferrite, the role of cobalt ferrite with type I, type II, direct Z-scheme, solid state Z-scheme heterojunctions, Schottky and p-n heterojunctions based on different heterostructures were also discussed. In conclusive outlook formation of cobalt ferrite based heterojunctions is best approach for the enhancement of photocatalytic performance. This is because heterojunction formation enhanced the rate of charge separation and thus reduced the electron–hole recombination. Herein, this review highlights the CoFe2O4 based heterojunctions for the photodegradation of noxious organic pollutants in water. Furthermore, the future expectations and challenges in exploiting CoFe2O4 nanocomposites for water treatment, also discussed in precise conclusion of this review. 相似文献
3.
A typical superparamagnetic nanoparticles-based dithiocarbamate absorbent (Fe3O4@SiO2-DTC) with core-shell structure was applied for aqueous solution heavy metal ions Ni2+, Cu2+ removal. 相似文献
4.
Ahmadreza Afraz Zahra Niknam Elham Mosayebi Amin Yusefi Mika Sillanpää 《Journal of Dispersion Science and Technology》2017,38(5):750-756
Magnetic nanoparticles with monodisperse shape and size were prepared by a simple method and covered by silica. The prepared core-shell Fe3O4@silica nanoparticles were functionalized by amino groups and characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer-Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. The synthesized nanoparticles were employed as an adsorbent for removal of Hg2+ from aqueous solutions, and the adsorption phenomena were studied from both equilibrium and kinetic point of views. The adsorption equilibriums were analyzed using different isotherm models and correlation coefficients were determined for each isotherm. The experimental data were fitted to the Langmuir–Freundlich isotherm better than other isotherms. The adsorption kinetics was tested for the pseudo-first-order, pseudo-second-order and Elovich kinetic models at different initial concentrations of the adsorbate. The pseudo-second-order kinetic model describes the kinetics of the adsorption process for amino functionalized adsorbents. The maximum adsorption occurred at pH 5.7 and the adsorption capacity for Fe3O4@silica-NH2 toward Hg2+ was as high as 126.7 mg/g which was near four times more than unmodified silica adsorbent. 相似文献
5.
《Journal of Saudi Chemical Society》2014,18(3):208-213
CoFe2O4/PAC composite adsorbent has been prepared via an immersing-calcination process, using ethylene diamine tetraacetic acid (EDTA) and citric acid (CIT) ligands containing sol as the CoFe2O4 precursor. The microstructure characterization and magnetic property of as-prepared sample were performed by means of XRD and VSM measurements. The adsorption kinetics, isotherms and thermodynamic process toward Bisphenol A molecules (BPA, which is considered as one of the typical endocrine disrupting chemicals) occurred on as-prepared magnetic adsorbent which were investigated by the pseudo-second order kinetic/intraparticle models, the Langmuir/Freundlich adsorption isothermal models and basic chemical thermodynamics principles, respectively. 相似文献
6.
《Arabian Journal of Chemistry》2020,13(5):5430-5437
In the present work, a simple synthesis approach was applied for the fabrication of CoFe2O4@SiO2-polyethyleneimine magnetic nanoparticles as an effective sorbent for ultrasonic-assisted removal of disulfine blue dye from an aqueous solution. For identification and characterization of prepared sorbent, different analysis including Fourier transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), Vibrating sample magnetometer (VSM), Energy dispersive X-ray analysis (EDX) and Transmission electron microscopy (TEM) were applied. The effect of effective parameters on the removal of disulfine blue such as pH, sorbent mass, ultrasonic time and disulfine blue concentration were also assessed. The optimum values for investigated parameters were achieved to be as follows: pH of 5.0, sorbent mass of 0.015 g, ultrasonic time of 5.0 min and disulfine blue concentration of 10.0 mg L−1. Different isotherm and kinetic models were used for the evaluation of isotherm and kinetic of adsorption. Results showed that the Langmuir isotherm model was better than other isotherm models as well as the second-order equation model was selected as a kinetic model. The maximum adsorption capacity of the proposed magnetic sorbent was achieved to be 110.0 mg g−1 which shows the applicability of proposed sorbent for removal of disulfine blue dye from aqueous solution. 相似文献
7.
《Arabian Journal of Chemistry》2020,13(5):5332-5344
In this study, magnetic spinel Co3O4/CoFe2O4 composite were synthesized by the mechanical mixing of both powdered pristine samples. Then the catalyst was characterized by TEM, SEM, XRD, BET, XPS and VSM measurement. Next, Co3O4/CoFe2O4 composite was applied to degrade rhodamine B (RhB) in water by activating persulfate. Results showed that Co3O4/CoFe2O4 composite exhibited high efficiency for removal of RhB, and 95.59% of it could be degraded in 45 min. Besides, the effects of parameters, such as initial pH, PS dosage, Co3O4/CoFe2O4 composite dosage, initial concentration of RhB and temperture were studied. Also, the effects of coexisting anions on RhB degradation were observed and explained. Furthermore, we conducted the quenching experiment and found that sulfate radical and hydroxyl radicals were the main active radicals in the degradation process. Finally, recycle experiments proved that Co3O4/CoFe2O4 had a good stability for RhB degradation. In short, Co3O4/CoFe2O4 composite is a promising catalyst for wastewater treatment. 相似文献
8.
《Journal of Saudi Chemical Society》2020,24(1):139-150
In this study, a modified copper ferrite/NiMgAl layered double hydroxide (CuFe2O4/NiMgAl-LDH) composite was developed for the adsorptive removal of oxytetracycline hydrochloride (OTC) antibiotic from aqueous solution. Material characterization by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transforms infrared spectrum (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms that the resultant material composes of a hexagonal layered doubled hydroxide structure with surficial deposits on CuFe2O4 cubes. The adsorption of OTC onto the prepared materials were studied as a function of solution pH, initial OTC concentration, reaction time and temperature. The OTC adsorption capacities of the prepared materials were as follows: CuFe2O4/NiMgAl-LDH composite > NiMgAl-LDH > CuFe2O4. The adsorption of OTC in the presence of salts like CuSO4, NaHCO3, NaCl were also studied and the results revealed that CuSO4 has a positive effect on OTC adsorption while NaHCO3 and NaCl showed the neutral and antagonistic effect. The results revealed that hydrogen bonding, anionic exchange, and electrostatic forces were mainly involved in the adsorption of OTC onto CuFe2O4/NiMgAl-LDH composite. OTC adsorption followed the pseudo-second-order kinetic model while the adsorption equilibrium data were well fitted to the Langmuir isotherm model with the maximum adsorption capacity of 192 mg/g at 323K. Furthermore, the thermodynamic study revealed that the adsorption process was spontaneous and endothermic. 相似文献
9.
In this study, CoFe2O4/Sawdust and NiFe2O4/Sawdust magnetic nanocomposites were synthesized using a hydrothermal method, and then characterized using X-ray powder diffraction, Infrared, scanning electron microscopy, Brunauer–Emmett–Teller/Barrett–Joyner–Halenda, and vibrating-sample magnetometer techniques. In this study, unmodified sawdust (US), modified sawdust (MS), unmodified CoFe2O4/sawdust (UCS), modified CoFe2O4/sawdust (MCS), unmodified NiFe2O4/sawdust (UNS), and modified NiFe2O4/Sawdust (MNS) magnetic nanocomposites, which are inexpensive, economical, environmentally friendly absorbents, and have a high selective hydrophobic, were used for the removal of oil from the water surface. The results show that the UCS, MCS, UNS, and MNS magnetic nanocomposites can selectively absorb the oil spreading on the water surface, due to its superhydrophobicity and superoleophilicity, and can be easily collected from water under the influence of a magnetic field. In addition, the results showed that the absorbents reach their equilibrium at the 30-min mark. Among all the absorbents, the MNS magnetic nanocomposite showed the maximum absorption capacity (18.172 g/g) at the 40-min mark. The results of the kinetic studies showed that the second-order kinetic equation with the highest correlation coefficient had the best fit with the experimental results. 相似文献
10.
Rahimi Z. Sarafraz H. Alahyarizadeh Gh. Shirani A. S. 《Journal of Radioanalytical and Nuclear Chemistry》2018,317(1):431-442
Journal of Radioanalytical and Nuclear Chemistry - Magnetite CoFe2O4 nanoparticle and CoFe2O4/MWCNT nanocomposite adsorbents with high specific surface area, high adsorption capacity, and easily... 相似文献
11.
Chuandong Zhang Yun Zhao Zhengping Li Wenjie Liu Chao Yao 《Journal of Dispersion Science and Technology》2018,39(4):491-496
In this article, highly efficient magnetic chitosan nanoparticles were prepared by the glutaraldehyde cross-linking method and then chemically-modified with amino groups through reaction between triethylenetramine and glycidyl methacrylate. The adsorption kinetics and isotherms of these novel adsorbents fit the pseudo-second-order model and the Langmuir model. The maximum adsorption capacities were 293?mg/g at pH?=?4.3 and t?=?1.4 hours. The rate-limiting step was the chemical adsorption. Further recycling experiments showed that the adsorbent provided the potential regeneration and reuse after adsorbing Cu2+. All the experimental results demonstrated that the adsorbent had a potential application in Cu2+ removal from wastewater. 相似文献
12.
Photothermal therapy (PTT) has emerged as one of the promising cancer therapy approaches. As a representative photothermal agent (PTA), magnetite possesses many advantages such as biodegradability and biocompatibility. However, photothermal instability hampers its further application. Herein, we systematically synthesized three kinds of ferrite nanoparticles and detailedly investigated their photothermal effect. Compared with Fe3O4 and MnFe2O4 nanoparticles, ZnFe2O4 nanoparticles exhibited a superior photothermal effect. After preservation for 70 days, the photothermal effect of Fe3O4 and MnFe2O4 nanoparticles observably declined while ZnFe2O4 nanoparticles showed slight decrease. Furthermore, in vitro experiment, ZnFe2O4 nanoparticles showed little toxicity to cells and achieved outstanding effect in killing cancer cells under NIR laser irradiation. Overall, through synthesizing and studying three kinds of ferrite MFe2O4 nanoparticles, we obtained ferrites as PTAs and learned about their changing trend in photothermal effect, expecting it can inspire further exploration of photothermal agents. 相似文献
13.
The anionic organic dye, zincon, was found to be a colorimetric probe for spermine and spermidine at pH 4.0 in pure aqueous solution through its aggregation by electrostatic interactions with them. The addition of spermine and spermidine led to bathochromic shifts with color changes from yellow to purple and dark brown, respectively, while other amines and basic amino acids induced no or minimal spectral and color changes. From Job’s plot and titration experiments, zincon interacted with spermine (+4 charges) and spermidine (+3 charges) in 4:1 and 3:1 stoichiometric ratios, respectively, indicating that each positive charge was bound to one zincon molecule. The detection limits were determined to be 25.1 for spermine and 30.7 nM for spermidine, which were sufficient below the critical concentration for cancer diagnosis. The results indicated that zincon can be a good candidate for simple, convenient colorimetric detection of spermine and spermidine in aqueous solution. 相似文献
14.
Meng-Qiao Wang Qing Zhou Man-Cheng Zhang Chen-Dong Shuang Yang Zhou Ai-Min Li 《中国化学快报》2013,24(7):601-604
A novel,bifunctional,hypercrosslinked.magnetic resin W2 was prepared using divinylbenzene(DVB) and glycidyl methacrylate(GMA) as comonomers in three steps(i.e.,suspension polymerization, amination and post-crosslinking reactions).To evaluate the adsorption of natural organic matter(NOM) and organic micropollutants(OMPs) on the obtained resin W2,two magnetic resins Wl(the precursor of W2 before post-crosslinking) and WO(the precursor of Wl before amination) were chosen for comparison.The results indicated that W2 would be a promising material for the removal of both NOM and OMPs from aquatic environments. 相似文献
15.
Sanjay Sarkar Nitika Tiwari Meerambika Behera Sankha Chakrabortty Kavya Jhingran Kali Sanjay Shirsendu Banerjee Suraj K. Tripathy 《印度化学会志》2022,99(5):100447
Dyes are commonly used in coloring clothes; in fertilizers, as anti-freezers, as detergents and so on. The use of such dyes has carcinogenic and genotoxic effects. These dyes require proper removal from the environment. Subsequently, a green and low-cost approach promises to adhere to sustainability of the environment while maximum removal of these toxic dyes. The present study describes removal of methyl violet (MV) dye by adsorption process magnetically separable Fe3O4-coir pith composites. The study was evaluated in batch system taking the optimum conditions as: pH: 7, contact time: 12 h, stirring speed: 200 rpm, concentration of dye: 100 mg/L, adsorbent weight: 3 g/L, temp.: 308 K. The central composite design approach of response surface methodology in design-expert software showed maximum removal efficiency (>98%) for optimal parameters. The experimental equilibrium data fitted reasonably well to Langmuir isotherm model. ANOVA analysis along with Fisher's statistical test was also performed to validate the model. The predicted model was at par with the experimental values with adjusted R2 of 0.9914. A thorough investigation of kinetic ( = 0.99; , thermodynamic, adsorption isotherm and eco-toxicological characteristics were performed for proper evaluations of the properties as well as sustainability of the adsorbent material. The whole research indicated encouraging potential of the developed material for adsorption, reusability and sustainability in applications for industrial scale wastewater treatment. 相似文献
16.
Wei Wang Meng Wu Huimin Liu Qinglei Liu Yan Gao Bing Zhao 《Tetrahedron letters》2019,60(25):1631-1635
A novel on-off-on fluorescence chemosensor BP based on benzothiazole for the relay recognition of Fe3+ and PPi was designed and synthesized. The chemosensor BP exhibited a high affinity to Fe3+ in the presence of other competing cations. The resultant BP-Fe3+ showed excellent recognition ability for PPi via Fe3+ displacement approach. The detection limits of BP for Fe3+ and BP-Fe3+ for PPi were estimated to be 2.59 × 10?8 M and 8.47 × 10?8 M, respectively. The low cytotoxicity and good cell-membrane permeability of BP and BP-Fe3+ complex makes them capable of Fe3+ and PPi imaging in living Hep G2 cells. 相似文献
17.
Herein, AgLi1/3Sn2/3O2 with delafossite structure was prepared by treating the layered compound Li2SnO3 with molten AgNO3 via ion exchange of Li+ for Ag+. The structure characterization and the electrochemical performance of AgLi1/3Sn2/3O2 was thoroughly investigated. AgLi1/3Sn2/3O2 is found to possess stacking lamellar morphology, which means small electrochemical impedance and so facilitates charge transfer kinetics during the cycling. Compared with Li2SnO3, due to the introducing of excellent electrical conductivity of silver, AgLi1/3Sn2/3O2 exhibits improved electrochemical performance in terms of capacity, cycling stability and coulombic efficiency. The results show AgLi1/3Sn2/3O2 presents favorable specific capacity of 339 mAh/g at current density of 200 mA/g after 50 cycles and initial coulombic efficiency of 96%. Ex situ XRD analysis revealed the reaction mechanism of AgLi1/3Sn2/3O2 as an anode for lithium ion batteries. 相似文献
18.
Conducting polymer/alumina composites as viable adsorbents for the removal of fluoride ions from aqueous solution 总被引:1,自引:0,他引:1
M. Karthikeyan 《Journal of fluorine chemistry》2009,130(10):894-5744
The polyaniline/alumina (PANi-AlO) and polypyrrole/alumina (PPy-AlO) composites were prepared and characterized by FT-IR, SEM and X-ray diffraction studies and were employed as adsorbents for the removal of fluoride ions from aqueous solution by the batch sorption method. The amount of fluoride ions adsorbed per unit mass of the adsorbents was observed to be higher than that by the individual constituents. The maximal amount of adsorption is 6.6 mg/g for PANi-AlO and for PPy-AlO it is 8 mg/g. The Langmuir and Freundlich isotherms were used to describe adsorption equilibrium. The kinetics of the adsorption process was investigated using Natarajan-Khalaf equation and intraparticle diffusion model. FT-IR and XRD pattern of the adsorbent, before and after the adsorption is recorded to get better insight into the mechanism of the adsorption process. The results of equilibrium and spectral investigations revealed that the mechanism of fluoride ion removal by these composites involve both the formation of aluminium-fluoro complexes on the alumina surface and doping/dopant-exchange of fluoride ions in the polymer. 相似文献
19.
采用超声辅助共沉淀法成功地将磁性Fe3O4纳米颗粒沉积在氧化石墨烯表面,利用透射电镜、磁滞回归曲线和X射线光电子能谱对材料进行了表征。将该材料作为载体固定辣根过氧化物酶,考察了固定化酶催化2-氯酚、4-氯酚和2,4-二氯酚降解反应,研究了溶液pH值、反应温度、反应时间、H2O2和氯酚浓度以及固定化酶用量对酚类物质去除率的影响。基于取代基数量和位置不同,去除率排序为2-氯酚<4-氯酚<2,4-二氯酚。另外,采用GC-MS研究了降解过程中的氧化产物。固定化酶的生化性质研究表明,固定化酶比游离酶具有更好的储存稳定性、pH稳定性和热稳定性。经过4次循环利用,固定化酶仍保留66%的活性,说明磁性纳米材料可以分离回收并重复利用,在污水处理领域具有应用前景。 相似文献
20.
《Arabian Journal of Chemistry》2022,15(5):103745
Methylcellulose (MC) is the most common commercial cellulose ether and the most attractive biopolymer due to its cheap cost of biodegradability, biocompatibility, hydrophilicity, and lack of toxicity. In this study, CoFe2O4@MC/activated carbon (AC) was synthesized as a unique magnetic nano-adsorbent in the presence of MC biopolymer for Reactive Red 198 (RR198) dye removal. The nano-magnetic adsorbent was characterized by FESEM (Field emission scanning electron microscopy), EDS (Energy-dispersive X-ray spectroscopy), Mapping, Linescan, BET (Brunauer–Emmett–Teller), FTIR (Fourier Transform Infrared Spectroscopy), XRD (X-Ray Diffraction), and VSM (Vibrating-Sample magnetometer). For simple separation by external magnetic fields, the Ms value was 57.91 emu/g. According to XRD analysis, the nano-adsorbent maintains its crystal structure, with an average crystal size of 11 nm. The maximum removal efficiencies of RR198 for synthetic and real wastewater samples under optimal conditions (an initial concentration of 10 mg/L, pH 3, contact time of 10 min, nanocomposite dose of 1.5 g/L, and a temperature of 25 °C) were 92.2% and 78%, respectively. The adsorption experiments were fitted well with the Freundlich isotherm (R2 = 0.989) and pseudo-second-order kinetic (R2 = 0.995). The values of entropy changes (ΔS = 35.087 kJ/mol.k), enthalpy changes (ΔH = -9.862 kJ/mol), and negative Gibbs free energy changes (ΔG) showed that the adsorption process was exothermic. Finally, the reusability findings showed that after six recovery cycles, the efficiency decreased slightly (90.1%). In the end, it can be concluded that the prepared CoFe2O4@Methylcellulose/AC can be used as an efficient adsorbent for the removal of RR198 from an aqueous solution. 相似文献