首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Ti4+ ions were introduced to the VO43- substituted Li3Fe2(PO4)3 by sol-gel method. Simultaneous substitution of Ti4+ for Fe3+ and VO43- for PO43- in the Li3Fe2(PO4)3 resulted in a net improvement in the rate capability and cycling performance, as compared with the single Ti4+ or VO43- substituted compound.  相似文献   

2.
6-Dimethylamino-2-phenylbenzothiazole (1-H) is a push-pull benzothiazole fluorophore mimicking the firefly oxyluciferin structure. We newly prepared 7-chloro and 7-bromo derivatives of 1-H and its 4-acetyl derivative (2-H), and their spectroscopic and photophysical properties were investigated. The halogenated derivatives showed the blue-shifted electronic absorption maxima and fluorescence emission maxima compared to 1-H and 2-H, resulted from the deformations of the NMe2 groups and the electron withdrawing properties of the halogen groups. In addition, the halogen substitutions accelerate intersystem crossing by heavy atom effect, resulting in a decrease in fluorescence quantum yields. Interestingly, however, the halogenated derivatives of 2-H still showed moderate fluorescence quantum yields. The halogenation effect is one of the guides to design push-pull benzothiazole fluorophores for tuning fluorescence properties.  相似文献   

3.
Ba[Zr0.25Ti0.75]O3 (BZT) thin films were synthesized by the complex polymerization method and heat treated at 400 °C for different times and at 700 °C for 2 h. These thin films were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, field emission gun-scanning electron microscopy (FEG-SEM) and atomic force microscopy (AFM), Ultraviolet–visible (UV–vis) absorption spectroscopy, electrical and photoluminescence (PL) measurements. FEG-SEM and AFM micrographs showed that the microstructure and thickness of BZT thin films can be influenced by the processing times. Dielectric constant and dielectric loss of BZT thin films heat treated at 700 °C were approximately 148 and 0.08 at 1 MHz, respectively. UV–vis absorption spectra suggested the presence of intermediary energy levels (shallow and deep holes) within the band gap of BZT thin films. PL behavior was explained through the optical band gap values associated to the visible light emission components.  相似文献   

4.
Pr3+-doped perovskites R1/2Na1/2TiO3:Pr (R=La, Gd, Lu, and Y) were synthesized, and their structures, optical absorption and luminescent properties were investigated, and the relationship between structures and optical properties are discussed. Optical band gap of R1/2Na1/2TiO3 increases in the order R=La, Gd, Y, and Lu, which is primarily due to a decrease in band width accompanied by a decrease in Ti-O-Ti bond angle. Intense red emission assigned to f-f transition of Pr3+ from the excited 1D2 level to the ground 3H4 state upon the band gap photo-excitation (UV) was observed for all compounds. The wavelength of emission peaks was red-shifted in the order R=La, Gd, Y, and Lu, which originates from the increase in crystal field splitting of Pr3+. This is attributed to the decrease in inter-atomic distances of Pr-O together with the inter-atomic distances (R, Na)-O, i.e., increase in covalency between Pr and O. The results indicate that the luminescent properties in R1/2Na1/2TiO3:Pr are governed by the relative energy level between the ground and excited state of 4f2 for Pr3+, and the conduction and valence band, which is primarily dependent on the structure, e.g., the tilt of TiO6 octahedra and the Pr-Ti inter-atomic distance and the site symmetry of Pr ion.  相似文献   

5.
The control of the condensed superstructure of light-emitting conjugated polymers(LCPs) is a crucial factor to obtain high performance and stable organic optoelectronic devices.Side-chain engineering strategy is an effective platform to tune inter chain aggregation and photophysical behaviour of LCPs.Herein,we systematically investigated the alkyl-chain branched effecton the conformational transition and photophysical behaviour of polydiarylfluorenes toward efficient blue optoelectronic devices.The branched side chain will improve materials solubility to inhibit interchain aggregation in solution according to DLS and optical analysis,which is useful to obtain high quality film.Therefore,our branched PEODPF,POYDPF pristine film present high luminance efficiency of 36.1% and 39.6%,enhanced about 20%relative to that of PODPF.Compared to the liner-type sides' chain,these branched chains also suppress chain planarization and improve film morphological stability effectively.Interestingly,the branched polymer also had excellent stable amplified spontaneous emission(ASE) behaviour with low threshold(4.72 μJ/cm~2) and a center peak of 465 nm,even thermal annealing at 220 C in the air atmosphere.Therefore,side-chain branched strategy for LCPs is an effective means to control interchain aggregation,film morphology and photophysical property of LCPs.  相似文献   

6.
A new and recyclable protocol was developed for Pd(OAc)2-catalyzed the cross-coupling reaction of terminal alkynes with arylboronic acids using environmentally friendly H2O/TBAB as reaction medium. A series of cross-coupling products containing internal acetylenic bond can be obtained with good selectivity and yield. The Pd(OAc)2/H2O/TBAB system was stable in the Sonogashira-type cross-coupling reaction and could be used at least three cycles without considerable decrease in catalytic performance. The results suggest that the unsupported and recyclable systems can be extended to the other realm of CC bond formation in synthetic organic chemistry.  相似文献   

7.
Crystal structure of Fe2F5(H2O)(Htaz)(taz)(Hdma) which crystallizes in the triclinic system space group P1¯ with unit cell parameters a = 8.8392(5) Å, b = 9.1948(5) Å, c = 9.5877(5) Å, α = 82.070(3)°, β = 63.699(3)°, γ = 89.202(3)°, Z = 2, and V = 690.91(7) Å3, was synthesized under hydrothermal conditions at 393 K for 72 h, by a mixture of FeF2/FeF3, 1,2,4-triazole molecule (Htaz), and hydrofluoric acid solution (HF 4%) in dimethylformamide solvent (DMF). The main feature of this material is the coexistence of two oxidation states for iron atoms (Fe2+, Fe3+) in the unit cell, which associate by opposite fluorine corners of FeF5N and FeF2N4 octahedra, and/or triazole molecule which originates the 2D produces material. The structure determination, performed from single crystal X-ray diffraction data, lead to the R1/WR2 reliability factors 0.031/0.087. Thermal stability studies (TG/DTG/DTA) show that the decomposition provides in the temperature range 473–773 K and no mass loss was detected before 473 K. Mass spectrometry (MS) has been used. The optical absorption of the solid was measured at the corresponding λmax using UV–vis diffuse-reflectance spectrum.  相似文献   

8.
Methemoglobin (bovine) is immobilized from aqueous phosphate buffer (pH 5.5) solution into thin porous TiO(2) (anatase) films at ITO electrode surfaces. Films of TiO(2) are produced in a deposition process employing 40 nm diameter TiO(2) nanoparticles suspended in dry methanol followed by calcination. The pore size in these films is sufficient for methemoglobin (ca. 6 nm diameter) to diffuse into the porous structure (over several hours) and to remain immobilized in electrochemically active form. The electrochemical reduction of methemoglobin immobilized in TiO(2) and immersed in aqueous phosphate buffer at pH 5.5 is observed in two steps with (i) a small quasi-reversible voltammetric response at -0.16 V vs. SCE (Process 1) and (ii) an irreversible reduction peak at ca. -0.5 V vs. SCE (Process 2). The irreversible response is recovered only after slow chemical re-oxidation of hemoglobin to methemoglobin. At sufficiently negative applied potential "electrochemical doping" of the TiO(2) host is observed to lead to a considerably enhanced reduction Process 1. TiO(2) can be temporarily switched from a non-conducting (irreversible electron transfer) into a conducting (reversible electron transfer) state.  相似文献   

9.
Sulfhydryl MCM-41 (SH-MCM-41) mesoporous materials were prepared via a hydrothermal method, and -SH was successfully imported by a post-grafting method. The structure and surface properties of the materials were characterized using Fourier Transform infrared spectroscopy, X-ray diffraction and Transmission Electron Microscopy analysis. The low concentrations of La3+, Gd3+ and Yb3+ adsorption on the material were investigated. This paper discusses the effects of system factors, such as pH and the solid-liquid ratio, on the performance of the adsorption process. The adsorption thermodynamics and kinetics were also explored. Experimental results indicated that the materials were in good order and had high specific surface area (956 m2/g) with an average pore diameter of 2.1 nm; the mercapto groups were successfully grafted onto a molecular sieve, and the best grafted amount was 1.46 × 10?3 mol/g. The materials showed preferable adsorption of La3+, Gd3+ and Yb3+ with maximum adsorption capacities of 560.56 mg/g, 467.60 mg/g and 540.68 mg/g, respectively. The adsorption process can be described by the Freundlich isotherm model, and the adsorption data fits pseudo-second-order kinetics. After repeating the elution-regeneration cycle four times, the adsorption capacity of rare earth ions was mostly maintained, indicating that the adsorbent can be regenerated well and recycled to save costs. It has potential in practical application.  相似文献   

10.
This study reveals that the Ru-catalyzed ring-closing metathesis of N-homoallyl-2-(hydroxymethyl)acrylamides is promoted by substrate-catalyst hydrogen bonding as well as dipole repulsion between the electron-rich side-chain and the carbonyl group, providing clues for designing effective synthetic routes towards 5,6-dihydro-2(1H)-pyridinones.  相似文献   

11.
There is a relatively low efficiency of Fe(III)/Fe(II) conversion cycle and H2O2 decomposition (<30%) in conventional Fenton process, which further results in a low production efficiency of OH and seriously restricts the application of Fenton. Herein, we report that the commercial MoO2 can be used as the cocatalyst in Fenton process to dramatically accelerate the oxidation of Lissamine rhodamine B (L-RhB), where the efficiency of Fe(III)/Fe(II) cycling is greatly enhanced in the Fenton reaction meanwhile. And the L-RhB solution could be degraded nearly 100% in 1 min in the MoO2 cocatalytic Fenton system under the optimal reaction condition, which is apparently better than that of the conventional Fenton system (~50%). Different from the conventional Fenton reaction where the OH plays an important role in the oxidation process, it shows that 1O2 contributes most in the MoO2 cocatalytic Fenton reaction. However, it is found that the exposed Mo4+ active sites on the surface of MoO2 powders can greatly promote the rate-limiting step of Fe3+/Fe2+ cycle conversion, thus minimizing the dosage of H2O2 (0.400 mmol/L) and Fe2+ (0.105 mmol/L). Interestingly, the MoO2 cocatalytic Fenton system also exhibits a good ability for reducing Cr(VI) ions, where the reduction ability for Cr(VI) reaches almost 100% within 2 h. In short, this work shows a new discovery for MoO2 cocatalytic advanced oxidation processes (AOPs), which devotes a lot to the practical water remediation application.  相似文献   

12.
A correlation between the recombination rate constant of free electrons and holes (k r) and the band gap (E g) of semiconductors (AgCl, AgBr, CdxZn1−x S, CdSe, CdTe, and their solid solutions) at 295 K was found. The experimental data were obtained by the UHF photoconductivity (36 GHz) using current carrier generation by laser pulses (λ = 337 nm, pulse duration 8 ns). A decrease in E g in a range of 1.5–3 eV increases k r by 1.5 orders of magnitude according to the law close to exponential. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 856–860, May, 2007.  相似文献   

13.
This contribution presents the correlation between structural, morphological, and fluorescence properties as well as device performance of nanocomposite solar cells comprising two low‐band gap polymers, poly[[9‐(1‐octylnonyl)?9H‐carbazole‐2,7‐diyl]‐2,5‐thiophenediyl‐2,1,3‐benzothiadiazole‐4,7‐diyl‐2,5‐thiophenediyl] (PCDTBT) and poly[2,1,3‐benzothiadiazole‐4,7‐diyl‐2,5‐thiophenediyl(9,9‐dioctyl‐9H‐9‐silafluorene‐2,7‐diyl)?2,5‐thiophenediyl] (PSiF‐DBT) and copper indium sulfide (CIS). It shows that, in analogy to organic solar cells, the device efficiency is strongly determined by different polymer structures leading to a different packing of the polymer chains and consequently to diverse morphologies. X‐ray diffraction investigation indicates increased semicrystallinity in PSiF‐DBT compared with the nitrogen analogue PCDTBT. The photoluminescence (PL) quenching of this polymer indicates that the higher photogeneration achieved in PSiF‐DBT based films can be correlated to a favorable donor‐acceptor phase separation. Transmission electron microscopy studies of PCDTBT:CIS blended films suggest the formation of polymer agglomerates in the layer resulting in a decreased PL quenching efficiency. For the considered polymer:CIS system, the combination of these effects leads to an enhanced overall device efficiency. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2013, 51, 1400–1410  相似文献   

14.
Crystalline orthorhombic Bi2WO6 powders were synthesized by a hydrothermal method from aqueous solutions of Bi(NO3)3·5H2O and Na2WO4·2H2O over a range of three selected pH values (2.0, 5.0 and 7.0), using NaOH as precipitating agent. The as-prepared catalysts were characterized by XRD, BET, FE-SEM, TEM, XPS and UV-vis spectroscopy. The effect of pH-synthesis on crystallinity, morphologies, surface area and optical absorption properties, were investigated. Although the pH has a marked influence on morphology, the nature of the precipitating agent (NaOH or TEA) also influences the morphology and surface structure composition, as it is observed in the present work. Three different probe molecules were used to evaluate the photo-catalytic properties under two illumination conditions (UV and Visible): Methyl Orange and Rhodamine B were chosen as dye substrates and Phenol as a transparent substrate. The photo-catalytic activities are strongly dependent not only on the pH used in the synthesis but also on the nature of the chosen substrate in assessing the photo-catalytic activities. Results were compared with those obtained when using TiO2(P25, Evonik) in the same experimental conditions. The photo-catalytic activity of one of the synthesised samples has been evaluated by exposing a mixture of Rhodamine B and Phenol in water, to different illumination conditions. Our results provide new evidences about the issue of whether dyes are suitable substrates to assess the activity of a photo-catalyst.  相似文献   

15.
The electrochemical behavior of austenitic stainless steel (Type 304) in 3 M sulfuric acid with 3.5% recrystallized sodium chloride at specific concentrations of butan-1-ol was investigated with the aid of potentiodynamic polarization, open circuit measurement and weight loss technique. Butan-1-ol effectively inhibited the steel corrosion with a maximum inhibition efficiency of 78.7% from weight-loss analysis and 80.9% from potentiodynamic polarization test at highest concentration studied. Adsorption of the compound obeyed the Freundlich isotherm. Thermodynamic calculations reveal physiochemical interactions and spontaneous adsorption mechanism. Surface characterizations showed the absence of corrosion products and topographic modifications of the steel. Statistical analysis depicts the overwhelming influence and statistical significance of inhibitor concentration on the inhibition performance.  相似文献   

16.
The protonation constants of two nitro-Schiff bases SB1, SB2 and three asymmetric tetradentate diimines H2L1, H2L2 and H2L3 and the stability constants of their ML type binuclear Ni(II) and Fe(III) complexes have been determined potentiometrically. The asymmetric diimines are (2OH) RCHNC6H4CHNR′ (2OH) type compounds [where R = R′ = phenyl for H2L1; R = naphthyl, R′ = phenyl for H2L2 and R = R′ = naphthyl for H2L3]. The effect of tautomeric forms on the acid-base properties of the diimines has been investigated and discussed. In addition, dimeric and binuclear Ni(II) and Fe(III) complexes of the diimines have been synthesized and characterized by physical and spectroscopic techniques. Also, in vitro antimicrobial activities of the diimines and the complexes have been evaluated against three bacteria: Micrococcus luteus (NRLL B-4375), Bacillus cereus (RSKK 863), Escherichia coli (ATCC 11230) and the fungus: Candida albicans (ATCC 10239).  相似文献   

17.
采用第一性原理平面波贋势方法对(111)应变下正交相Ca2P0.25Si0.75的能带结构及光学性质进行模拟计算.计算结果表明:(111)面在晶格发生100%~104%张应变时,带隙随着应变增加而增大;在晶格发生104%~112%压应变时,带隙随着张应变的增加而减小;88%~100%压应变时,带隙随着压应变的增加而减小;当压应变达到88%后转变为导体.当施加应变后光学性质发生显著的变化,随着压应变的增加静态介电常数、折射率逐渐减小,张应变则反之.施加压应变反射向高能方向偏移,施加张应变反射向低能方向偏移.施压应变吸收谱增大,施加张应变吸收谱变小.综上所述,应变可以改变Ca2P0.25Si0.75的电子结构和光学常数,是调节Ca2P0.25Si0.75光电传输性能的有效手段.  相似文献   

18.
In this work, we synthesised and characterised three novel fluorescence macrocyclic sensors containing optically active dansyl groups. The studies for the interaction of the synthesised compounds with various mental ions (Li+, Na+, K+, Ag+, Mg2+, Ca2+, Ba2+, Pb2+, Zn2+, Co2+, Cd2+, Hg2+, Ni2+, Cu2+, Mn2+, Cr3+, Al3+, Fe3+) were performed by fluorescence titration, Job’s plot, ESI-MS and DFT calculations. The results showed that the sensors 1a–1c displayed selective recognition for Cu2+ and Fe3+ ions and formed stoichiometry 1:1 complex through PET mechanism in DMSO/H2O solution (1:1, v/v, pH 7.4 of HEPES). The binding constant (K) and detection limit were calculated.  相似文献   

19.
A facile adsorbent, a nanocomposite of Fe3O4 and reduced graphene oxide, was fabricated for the selective separation and enrichment of synthetic aromatic azo colorants by magnetic solid‐phase dispersion extraction. The nanocomposite was synthesized in a one‐step reduction reaction and characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray diffraction and Brunauer–Emmett–Teller analysis. The colorants in beverages were quickly adsorbed onto the surface of the nanocomposite with strong π–π interactions between colorants and reduced graphene oxide, and separated with the assistance of an external magnetic field. Moreover, the four colorants in beverages were detected at different wavelengths by high performance liquid chromatography with diode array detection. A linear dependence of peak area was obtained over 0.05–10 μg/mL with the limits of detection of 10.02, 11.90, 10.41, 15.91 ng/mL for tartrazine, allure red, amaranth, and new coccine, respectively (signal to noise = 3). The recoveries for the spiked colorants were in the range of 88.95–95.89% with the relative standard deviation less than 2.66%. The results indicated that the nanocomposite of Fe3O4 and reduced graphene oxide could be used as an excellent selective adsorbent for aromatic compounds and has potential applications in sample pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号