首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen reduction reactions(NRR) under room conditions remain the challenge for N2 activation on metal-based catalysis materials. Herein, the M-doped Ce O2(111)(M = Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) with oxygen vacancies, are systematically investigated by spin-polarized DFT + U calculations.We discuss briefly the situation of OVs on pure and reduced cerium, and we found that(1) doping TMs can promote the formation of oxygen defects, apart from Ti and V-dopant,(2) ...  相似文献   

2.
The aim of this work was to investigate the structural and optical properties of bare cerium dioxide (CeO2) and Pd-doped CeO2 (0.5, 1.0, 1.5 and 2.0 wt%) photocatalysts prepared by a combination of homogeneous precipitation and the impregnation method. X–ray diffraction analysis indicated that all samples were composed of the cubic fluorite phase of CeO2. Scanning electron micrographs revealed that all samples provided mostly spherical morphology with high agglomeration and estimated particle sizes ranging from 10 to 20 nm in diameter. The XPS core-level spectra of Pd species after incorporating 2.0 wt% Pd–doped CeO2 showed double peaks with binding energies of Pd3d5/2 and Pd3d3/2 corresponding to the Pd2+ oxidation state. The results from diffuse reflectance UV–visible spectroscopy showed that doping with Pd increased the absorbance onset of CeO2 to a longer wavelength, while the band gap decreased from 3.0 eV to 2.8 eV with 2.0% Pd doping concentration. This was likely due to the creation of impurity levels of Pd2+ inside the conduction and valence bands of CeO2. The photoluminescence spectra (PL) indicated that the emission peak intensity of CeO2 decreased in the presence of Pd2+ dopant in CeO2. This was associated with a decrease in the electron–hole recombination rate for electronically-excited. Photocatalytic activity for methyl orange dye degradation under visible light irradiation of 1.0 wt% Pd–doped CeO2 was determined as the optimal doping level with photocatalytic activity 5 times higher than that of bare CeO2 photocatalyst.  相似文献   

3.
CeO2/zeolite nanocomposite was successfully prepared by the mixing-calcination method. The structural characteristics of photocatalyst were investigated by XRD, SEM, TEM and EDX. Photocatalytic degradation experiments were carried out with varying amounts of the CeO2/zeolite, the ratio of 3:1 (CeO2/zeolite) was exhibited excellent photocatalytic activity towards dye degradation. Synergistic effect of CeO2/zeolite played a key role in photocatalytic degradation. The main reactive oxygen species was determined by trapping experiments. Additionally, the recyclability was tested up to the fourth cycle. The CeO2/zeolite nanocomposite is a promising photocatalyst for removing trace and unprocessed organic contaminants in the industrial dye waste water treatment. The efficiency of CeO2/zeolite nanocomposite offers a potential economical route to degrade organic contaminants and recovering photocatalyst simultaneously.  相似文献   

4.
PbO2-CeO2 nanocomposite electrodes were prepared by pulse electrodeposition in the lead nitrate solution containing CeO2 nanoparticles with different duty cycles. The effects of duty cycle on the morphology and phase structure were investigated by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. The SEM and XRD results show that the decrease of duty cycle can reduce the grain size of PbO2-CeO2 nanocomposite electrodes and make the electrodes more compact. The CeO2 content in composite electrodes increases with the decrease of duty cycle. The steady-state polarization curves and accelerated life tests demonstrate that the oxygen evolution overpotential and service life of PbO2-CeO2 nanocomposite electrodes increase with the decrease of duty cycle. The service life of PbO2-CeO2 nanocomposite electrodes prepared with 25 % duty cycle reaches 218 h which is 1.8 times longer than that of PbO2-CeO2 nanocomposite electrodes prepared by direct electrodeposition. The bulk electrolysis shows that the degradation of malachite green (MG) on the PbO2-CeO2 nanocomposite electrodes is the pseudo-first-order reaction and the MG and chemical oxygen demand (COD) removal efficiency on PbO2-CeO2 nanocomposite electrodes increases with the decrease of duty cycle, which can be attributed to the higher oxygen evolution overpotentials, electrochemical active surface area, and CeO2 content in the composite electrodes.  相似文献   

5.
PbO2–CeO2 nanocomposite electrodes were prepared by pulse electrodeposition method in the lead nitrate solution containing CeO2 nanoparticles with different peak current density. The content of CeO2 nanoparticles in the electrodes increase with the increase of peak current density. The effects of peak current density on the morphology and structure of PbO2–CeO2 nanocomposite electrodes were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The SEM and XRD results show that the increase of peak current density can make the morphology finer and more compact, and the crystal size decreases with the increase of peak current density. The oxygen evolution overpotential and stability of PbO2–CeO2 nanocomposite electrodes enhance with the increase of peak current density. The electrocatalytic property of PbO2–CeO2 nanocomposite electrodes was examined for the electrochemical oxidation of rhodamine B (RhB). The results show that the RhB removal efficiency on PbO2–CeO2 nanocomposite electrodes increase with the increase of peak current density, which can be attributed to the higher oxygen evolution overpotential and CeO2 content in the composite electrodes.  相似文献   

6.
The Mg–Ce–O powder are shown to contain periclase-type MgO and/or fluoride-type cerium oxide (CeO2) depending upon the composition (x) defined by Ce/(Ce + Mg) atomic ratio. Lattice contraction of pariclase phase of MgO (average crystallite size ~8.8 nm) at Ce content of ‘x’ = 0.20 in comparison to pure MgO (crystallite size ~9.5 nm) has been realized due to oxygen vacancy formation. The optical band gap values of CeO2 varies (3.0–3.2 eV) due to oxygen vacancy formation in CeO2 phase, crystallite size and/or Ce3+/Ce4+ ratio. Further, the addition of Ce has shown to reduce the physisorption and chemisorption of water significantly as reflected by (1) suppression of related absorption peaks and (2) absence of magnesium hydroxide, Mg(OH)2, bands in Fourier transform infrared spectra.  相似文献   

7.
We report the structural, thermal, optical, and redox properties of Fe‐doped cerium oxide (CeO2) nanoparticles, obtained using the polyol‐co‐precipitation process. X‐ray diffraction data reveal the formation of single‐phase structurally isomorphous CeO2. The presence of Fe3+ may act as electron acceptor and/or hole donor, facilitating longer lived charge carrier separation in Fe‐doped CeO2 nanoparticles as confirmed by optical band gap energy. The increased content of localized defect states in the ceria gap and corresponding shift of the optical absorption edge towards visible range in Fe‐doped samples can significantly improve the optical activity of nanocrystalline ceria. The better‐quality redox performances of the Fe‐doped CeO2 nanoparticles, compared with undoped CeO2 nanoparticles, were ascribed mainly to a decrease in band gap energy and an increase in specific surface area of the material. As observed from TPR studies all Fe ‐doped CeO2 nanoparticles, particularly the 10 mol % Fe doped CeO2 nanoproduct, exhibit excellent reduction performance.  相似文献   

8.
Undoped and transition metal (TM: Ni, Mn, Co)-doped CeO2–SnO2 nanocomposite thin films were prepared by sol-gel dip coating (SGDC) technique. The grazing incidence X-ray diffraction (GIXRD) patterns indicated that CeO2–SnO2 film has a cubic structure of CeO2 and the crystallinity deteriorated with incorporation of dopant. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) images showed that the surface morphology of the films was affected by TM incorporation. The surface roughness and fractal dimensions of CeO2–SnO2 films increased with doping. The average transmittance of CeO2–SnO2 thin film is found nearly 80% in the visible region and increased with doping. The absorption edge revealed a blue shift toward shorter wavelengths after incorporation of TM ions. The compositional dependence of optical parameters such as refractive index, extinction coefficient, and optical conductivity were also investigated. Cyclic voltammetry measurements showed that ion storage capacity was decreased significantly with increasing scan rate. The undoped and doped CeO2–SnO2 films showed good reversible cycle of intercalation/deintercalation of Li+ ions. The ion storage capacity and electrochemical stability were enhanced with transition metal doping. The Mn-doped CeO2–SnO2 composite thin film had better ion storage capacity rather than other samples due to its special porous morphology. The Li diffusion toward electrode surface was described in terms of self-similar fractal dimension. A quenching in blue-green photoluminescence (PL) intensity of CeO2–SnO2 films was occurred by transition metal doping.  相似文献   

9.
采用溶剂热法合成了不同Fe掺杂含量的Fe-CeO2纳米粉体及不同氮源掺杂的N-10% Fe-CeO2nFe/(nFe+nCe)=10%)纳米粉体。利用TEM、XRD、XPS、Raman和UV-Vis等技术对其微观结构与形貌进行了表征,并通过降解亚甲基蓝溶液对其光催化性能进行了研究。结果表明,Fe掺杂可以提高CeO2的光催化性能,以10% Fe-CeO2催化效率最高,对亚甲基蓝的降解率从纯CeO2的67%提高到95%。而N的掺杂可调节10% Fe-CeO2催化性能。以浓氨水为氮源的N-10% Fe-CeO2(NH3·H2O-N-10% Fe-CeO2)的降解率可进一步提高到97%,并且具有较好的稳定性,经5次循环使用,对亚甲基蓝的光催化降解率仍高达89%。CeO2催化活性的提高主要由于掺杂Fe和N改变了CeO2的晶体结构与能带结构,促进了光生电子与空穴的产生与催化反应。  相似文献   

10.
11.
本文以廉价无机盐Na2SiO3·9H2O和TiCl4溶液为原料,采用化学包覆结合超临界流体干燥(SCFD)法制备纳米级TiO2-SiO2复合光催化剂。利用XRD、TEM、NMR等手段对复合粉体进行了表征。结果表明,采用超临界流体干燥法可直接制得锐钛矿型TiO2-SiO2纳米复合光催化剂,其中SiO2以单分散、无定形形式存在。以苯酚和邻苯二酚紫光催化降解为反应模型,考察了TiO2-SiO2复合光催化剂的催化性能。证明掺入适量SiO2的TiO2-SiO2纳米复合光催化剂既减少了TiO2的用量、降低了成本,又在某种程度上提高了TiO2的光催化活性。SiO2的引入可以有效抑制纳米粒子粒径的长大和晶相的转变,增强了二氧化钛纳米粒子的热稳定性。二氧化硅的最优掺杂量为15%(质量分数)。  相似文献   

12.
采用溶剂热法合成了不同Fe掺杂含量的Fe-CeO_2纳米粉体及不同氮源掺杂的N-10%Fe-CeO_2(n_(Fe)/(n_(Fe)+n_(Ce))=10%)纳米粉体。利用TEM、XRD、XPS、Raman和UV-Vis等技术对其微观结构与形貌进行了表征,并通过降解亚甲基蓝溶液对其光催化性能进行了研究。结果表明,Fe掺杂可以提高CeO_2的光催化性能,以10%Fe-CeO_2催化效率最高,对亚甲基蓝的降解率从纯CeO_2的67%提高到95%。而N的掺杂可调节10%Fe-CeO_2催化性能。以浓氨水为氮源的N-10%Fe-CeO_2(NH_3·H_2O-N-10%Fe-CeO_2)的降解率可进一步提高到97%,并且具有较好的稳定性,经5次循环使用,对亚甲基蓝的光催化降解率仍高达89%。CeO_2催化活性的提高主要由于掺杂Fe和N改变了CeO_2的晶体结构与能带结构,促进了光生电子与空穴的产生与催化反应。  相似文献   

13.
Transparent SnO2, nanocomposite ZrO2–SnO2 and ZrO2 thin films were prepared by sol–gel dip-coating technique. X-ray diffraction (XRD) spectra showed a mixture of three phases: tetragonal ZrO2 and SnO2 and orthorhombic ZrSnO4. X-ray photoelectron spectroscopy (XPS) gave Zr 3d, Sn 3d and O 1s spectra of the nanocomposite ZrO2–SnO2 thin film which revealed the presence of oxygen vacancies in the nanocomposite ZrO2–SnO2 thin film. Scanning electron microscopy (SEM) observations showed that microstructure of the nanocomposite ZrO2–SnO2 thin film consists of uniform dispersion of isolated SnO2 particles in ZrO2 matrix. The band gap for the ZrO2 was estimated to be 5.51 eV and that for the nanocomposite ZrO2–SnO2 film was 4.9 eV. These films demonstrated the tailoring of band gap values which can be directly employed in tuning the band gap by simply changing the relative concentration of zirconium and tin elements. Photoluminescence (PL) spectra revealed an intense emission peak at 424 nm in the nanocomposite ZrO2–SnO2 film which indicate the presence of oxygen vacancies in ZrSnO4.  相似文献   

14.
A Sn2Fe/C nanocomposite containing Cu was evaluated as an anode material for rechargeable lithium-ion batteries. The electrochemical reaction mechanism of this nanocomposite was examined by ex-situ X-ray diffraction and high resolution transmission electron microscopy. The Sn2Fe/C nanocomposite containing Cu showed dramatically improved cycling performance. The enhanced cyclability of the Sn2Fe/C nanocomposite containing Cu was attributed to both amorphization of the Sn2Fe phase and a recombination reaction between Sn and Cu during the charging step.  相似文献   

15.
《Arabian Journal of Chemistry》2020,13(11):7680-7694
Infections are the main cause for delayed wound healing. Graphene oxide (GO) and cerium oxide nanoparticles are used for many biomedical applications because of their biocompatibility and therapeutic property. Cerium Oxide (CeO2)/Graphene Oxide (GO) nanocomposite was synthesized in this work. It shows good antimicrobial property against wound pathogens. The aggregation of CeO2 particles on GO results in the generation of reactive oxygen species (ROS) and inhibits microbial growth. The synthesized nanocomposites were analysed by X-ray diffraction, Transmission electron microscopy, Raman Spectroscopy, UV–vis diffuse reflectance spectroscopy and Fourier transformation-IR spectroscopy. The antimicrobial activity of CeO2/GO nanocomposite was tested against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) Staphylococcus aureus (S. aureus) and Salmonella typhi (S. typhi). Well diffusion method, growth curve studies, bio film inhibition studies and colony count studies were done in both presence and absence of visible light. The mechanistic investigation was done by the determination of reactive oxygen species (ROS), Lactate dehydrogenase leakage (LDH) assay and DNA fragmentation assay.  相似文献   

16.
Although TiO2 is an efficient photocatalyst, its large band gap limits its photocatalytic activity only to the ultraviolet region. An experimentally synthesized ternary Fe/C/S‐doped TiO2 anatase showed improved visible light photocatalytic activity. However, a theoretical study of the underlying mechanism of the enhanced photocatalytic activity and the interaction of ternary Fe/C/S‐doped TiO2 has not yet been investigated. In this study, the defect formation energy, electronic structure and optical property of TiO2 doped with Fe, C, and S are investigated in detail using the density functional theory + U method. The calculated band gap (3.21 eV) of TiO2 anatase agree well with the experimental band gap (3.20 eV). The defect formation energy shows that the co‐ and ternary‐doped systems are thermodynamically favorable under oxygen‐rich condition. Compared to the undoped TiO2, the absorption edge of the mono‐, co‐, and ternary‐doped TiO2 is significantly enhanced in the visible light region. We have shown that ternary doping with C, S, and Fe induces a clean band structure without any impurity states. Moreover, the ternary Fe/C/S‐doped TiO2 exhibit an enhanced photocatalytic activity, a smaller band gap and negative formation energy compared to the mono‐ and co‐doped systems. Moreover, the band edges of Fe/C/S‐doped TiO2 align well with the redox potentials of water, which shows that the ternary Fe/C/S‐doped TiO2 is promising photocatalysts to split water into hydrogen and oxygen. These findings rationalize the available experimental results and can assist the design of TiO2‐based photocatalyst materials.  相似文献   

17.
The reactivity of CeO2 is determined by grain size and oxygen vacancies, which can be achieved by doping elements with less oxidation state into CeO2. In this study nanocrystalline Ca-doped CeO2 sol was synthesized from the reaction of hydrate cerium (III) nitrate and calcium nitrate tetrahydrate in alcohol solution after being calcined at 600?°C. X-ray diffraction as well as selected area electron diffraction gave evidence that the synthesized Ca-doped CeO2 samples were well crystalline and had a cubic fluorite structure. TEM observation revealed that Ca-doped CeO2 was composed by nanoparticles with grain size around 8?nm. The Raman spectrum of pure CeO2 consists of a single triple degenerate F2g model characteristic of the fluorite-like structure. In the Ca-doped CeO2 sample, two additional low-intensity Raman bands were detected, thus confirming the formation of the solid solution. The synthesized nanometric powder is expected to be used in solid oxide fuel cells as well as in the catalytic treatment of automobile exhaust fumes.  相似文献   

18.
Mixed conductive perovskite materials, e.g., La1−xSrxO3−δ (LSCO), have been widely investigated to understand the leverages of doping extent and composition on the oxygen permeability with the aim of developing an oxygen-transport solid electrolyte membrane. However at the present stage fabrication of a dense thin layer of perovskite oxide on a porous tubular support possessing mechanically and chemically stability at high temperatures is still a technological challenge to the endeavor. This is because the asymmetric configuration is a desired model of the commercial oxygen-permeable ceramic membrane reactor. The present work develops a new approach that allows the formation of a complete gas-tight oxygen-permeable thin membrane on the outer surface of a porous CeO2 tube by the means of slurry coating. The oxygen-permeable membrane is a dual-phase composite containing equal volume fractions of CeO2 and LSCO-80 (x = 0.8). In the membrane CeO2 particles are uniformly embedded in the continuous LSCO phase, and this highly dispersed semi-continuous structure could successfully buffer the mechanical stress generated in the LSCO phase due to mismatch of coefficient of thermal expansion (CTE) between the membrane and the support. The oxygen permeation flux tests showed a low activation energy barrier (∼30 kJ/mol) of the whole electrochemical reaction in the temperature range from 400 to 900 °C. The surface de-sorption (or the anodic) process of the oxygen has been simulated using the extended Hückel theory (EHT). The activation energy obtained from the EHT simulation is found very close to the experiment data. In addition, according to the computer simulation, surface oxygen de-sorption activation energy relies on the surface oxygen vacancy density and thus the oxygen partial pressure.  相似文献   

19.
《印度化学会志》2023,100(8):101061
Chitosan modified CeO2/ZrO2 were prepared by co-precipitation method and its photocatalytic activity was studied while exposed to solar light. Various doping concentrations was evaluated and 30 mol % CeO2/ZrO2 doping concentration enhanced higher activity when it was modified into Chitosan employing Orange G dye as a model pollutant while exposed to sun light. The synthesized catalyst was highly crystalline, and its average crystalline size was found to be 30 nm using X-ray diffraction analysis. Structural morphology, functional groups, thermal decomposition temperature and particle size were confirmed by Scanning Electron Microscope (SEM), Fourier Transform-Infra Red, Thermal Gravimetric Analysis and Transmission Electron Microscope analysis. XPS confirms the band alignment and oxidation states of the synthesized photo catalyst. In accordance with the UV-Diffused Reflectance Spectrum, the band gap energy is 2.9 eV. The enhanced photo catalytic activities of the prepared photocatalyst were confirmed by effect of catalyst, effect of dye concentration, effect of electrolytes, kinetics and COD. The reaction follows first order kinetics, and the pseudo first order rate constant was evaluated from the kinetics plot.  相似文献   

20.
The selective oxidation of CO in the presence of hydrogen on CuO/CeO2 systems containing Fe and Ni oxides as promoters was studied. The catalysts containing 1–5 wt % CuO and 1–2.5 wt % Fe2O3 supported on CeO2 and the CuO/CeO2 systems containing 1–2.5 wt % NiO were synthesized, and their catalytic activity as a function of temperature was determined. It was found that the additives of Fe and Ni oxides increased the activity of the CuO/CeO2 catalysts with a low concentration of CuO. In this case, the conversion of CO at 150°C approached 100%. At the same time, these additives had no effect on the activity of the CuO/CeO2 systems at a CuO concentration of 5 wt % or higher, which exhibited an initially high activity in the above temperature region. The forms of CO adsorption and the amounts of active sites for CO adsorption and oxidation were studied using temperature-programmed desorption. It was found that the introduction of Fe and Ni additives in a certain preparation procedure facilitated the formation of an additional amount of active centers associated with CuO. Data on the temperature-programmed reduction of samples (the amount of absorbed hydrogen and the maximum temperature of hydrogen absorption) suggested the interaction of all catalyst components, and the magnitude of this interaction depended on the sample preparation procedure. With the use of Mössbauer spectroscopy, it was found that the procedure of iron oxide introduction into the CuO/CeO2 system was responsible for the electron-ion interactions of catalyst components and the reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号