首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Biochar, produced and activated from thermochemical methods, was applied as catalyst for catalytic biorefinery and environmental pollutant removal. In this review, recent advanced studies of biochar catalyst were discussed.  相似文献   

2.
挥发性有机物(VOCs)是大气中重要的污染源之一,对环境和人类健康产生严重的危害。吸附法是工业中最常用的去除VOCs的方法,吸附剂是吸附技术的关键,生物质炭是一种由生物质基材料在高温下热解活化等工艺制得的炭材料,具有较高的比表面积、丰富的孔隙结构和化学活性表面,在环境污染控制领域具有广泛应用。基于最近的研究,本文系统地综述了常用于去除VOCs的生物质炭的制备和改性方法,以及生物质炭在吸附VOCs的应用研究。本文首要目标是评估生物质炭去除VOCs的能力,特别是经过各种改性和活化工艺后,评价生物质炭作为吸附剂去除VOCs的适用性;确定改性和活化后对VOCs吸附能力的影响;揭示生物质炭对VOCs可能存在的吸附机理。最后,文章也对生物质炭的再生提出了建议和展望。  相似文献   

3.
《中国化学快报》2020,31(10):2591-2602
Algae are potential feedstock for the production of bioenergy and valuable chemicals. After the extraction of specific value-added products, algal residues can be further converted into biogas, biofuel, and biochar through various thermochemical treatments such as conventional pyrolysis, microwave pyrolysis, hydrothermal conversion, and torrefaction. The compositions and physicochemical characteristics of algal biochar that determine the subsequent applications are comprehensively discussed. Algal biochar carbonized at high-temperature showed remarkable performance for use as supercapacitors, CO2 adsorbents, and persulfate activation, due to its graphitic carbon structure, high electron transport, and specific surface area. The algal biochar produced by pyrolysis at moderate-temperature exhibits high performance for adsorption of pollutants due to combination of miscellaneous functional groups and porous structures, whereas coal fuel can be obtained from algae via torrefaction by pyrolysis at relatively low-temperature. The aim of this review is to study the production of algal biochar in a cost-effective and environmental-friendly method and to reduce the environmental pollution associated with bioenergy generation, achieving zero emission energy production.  相似文献   

4.
《中国化学快报》2023,34(11):108357
In recent years, biochar (BC) as a low-cost, easily available biomass product, is widely applied in sulfate radical-based advanced oxidation processes (SR-AOPs) for emerging pollutants remediation. Herein, a state-of-art review of iron-based biochar catalysts is currently available in SR-AOPs application. A general summary of the development of biochar and the catalytic properties of biochar is presented. Especially, the synthetic strategies of different types of iron-based biochar catalysts are discussed. Moreover, the theoretical calculation to interpret the interaction between biochar and iron species is discussed to explore the activation mechanisms. And the regeneration methods of biochar-based catalyst are presented. The unresolved challenges of the existent biochar-based SR-AOPs are pointed out, and the outlooks of future research directions are proposed.  相似文献   

5.
This paper provides the basis for understanding the preparation and properties of an old, but advanced material: activated carbon. The activated carbons discussed herein are obtained from “green” precursors: biomass residues. Accordingly, the present study starts analyzing the components of biomass residues, such as cellulose, hemicellulose, and lignin, and the features that make them suitable raw materials for preparing activated carbons. The physicochemical transformations of these components during their heat treatment that lead to the development of a carbonized material, a biochar, are also considered. The influence of the chemical activation experimental conditions on the yield and porosity development of the final activated carbons are revised as well, and compared with those for physical activation, highlighting the physicochemical interactions between the activating agents and the lignocellulosic components. This review incorporates a comprehensive discussion about the surface chemistry that can be developed as a result of chemical activation and compiles some results related to the mechanical properties and conformation of activated carbons, scarcely analyzed in most published papers. Finally, economic, and environmental issues involved in the large-scale preparation of activated carbons by chemical activation of lignocellulosic precursors are commented on as well.  相似文献   

6.
In a time when climate change increases desertification and drought globally, novel and effective solutions are required in order to continue food production for the world’s increasing population. Synthetic fertilizers have been long used to improve the productivity of agricultural soils, part of which leaches into the environment and emits greenhouse gasses (GHG). Some fundamental challenges within agricultural practices include the improvement of water retention and microbiota in soils, as well as boosting the efficiency of fertilizers. Biochar is a nutrient rich material produced from biomass, gaining attention for soil amendment purposes, improving crop yields as well as for carbon sequestration. This study summarizes the potential benefits of biochar applications, placing emphasis on its application in the agricultural sector. It seems biochar used for soil amendment improves nutrient density of soils, water holding capacity, reduces fertilizer requirements, enhances soil microbiota, and increases crop yields. Additionally, biochar usage has many environmental benefits, economic benefits, and a potential role to play in carbon credit systems. Biochar (also known as biocarbon) may hold the answer to these fundamental requirements.  相似文献   

7.
纤维素制取乙醇技术   总被引:1,自引:0,他引:1  
以纤维素为原料生产燃料乙醇由于其原料来源广泛及环保效益良好而被认为是最有前景的生产燃料乙醇的方法之一。以纤维素为原料生产乙醇主要包括水解和发酵两个转化过程。本文介绍了纤维素生产燃料乙醇的原理及工艺过程,同时讨论了各工艺过程需要解决的关键技术问题,分析了过程的经济性,最后介绍了国内外的应用现状,展望了纤维素生产燃料乙醇的产业化前景。  相似文献   

8.
纤维素制取乙醇技术   总被引:4,自引:0,他引:4  
以纤维素为原料生产燃料乙醇由于其原料来源广泛及环保效益良好而被认为是最有前景的生产燃料乙醇的方法之一.以纤维素为原料生产乙醇主要包括水解和发酵两个转化过程.本文介绍了纤维素生产燃料乙醇的原理及工艺过程,同时讨论了各工艺过程需要解决的关键技术问题,分析了过程的经济性,最后介绍了国内外的应用现状,展望了纤维素生产燃料乙醇的产业化前景.  相似文献   

9.
Removal of steroid hormones from aqueous environment is of prevailing concern because of their adverse impact on organisms. Using biochar derived from biomass as adsorbent to remove pollutants has become more popular due to its low cost, effectiveness, and sustainability. This study evaluated the feasibility of applying corn straw biochar (CSB) and dewatered sludge biochar (DSB) to reduce 17β-estradiol (E2) from aquatic solutions by adsorption. The experimental results showed that the adsorption kinetics and isotherm behavior of E2 on the two biochars were well described by the pseudo-second-order (R2 > 0.93) and Langmuir models (R2 > 0.97). CSB has higher E2 adsorption capacity than DSB, and the maximum adsorption capacity was 99.8 mg/g obtained from Langmuir model at 298 K, which can be attributed to the higher surface area, porosity, and hydrophobicity of this adsorbent. Higher pH levels (>10.2) decreased the adsorption capacities of biochar for E2, while the ionic strength did not significantly affect the adsorption process. The regeneration ability of CSB was slightly better than that of DSB. The possible adsorption mechanism for E2 on biochar is suggested as π–π interactions, H–bonding, and micropores filling. These results indicated that CSB has more potential and application value than DSB on reducing E2 from aqueous solutions when considering economy and removal performance.  相似文献   

10.
Biochar has been explored as a sorbent for contaminants, soil amendment and climate change mitigation tool through carbon sequestration. Through the optimization of the pyrolysis process, biochar can be designed with qualities to suit the intended uses. Biochar samples were prepared from four particle sizes (100–2000 µm) of three different feedstocks (oak acorn shells, jift and deseeded carob pods) at different pyrolysis temperatures (300–600 °C). The effect of these combinations on the properties of the produced biochar was studied. Biochar yield decreased with increasing pyrolysis temperature for all particle sizes of the three feedstocks. Ash content, fixed carbon, thermal stability, pH, electrical conductivity (EC), specific surface area (SSA) of biochar increased with increasing pyrolysis temperature. Volatile matter and pH value at the point of zero charge (pHpzc) of biochar decreased with increasing pyrolysis temperature. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that the surface of the biochar was rich with hydroxyl, phenolic, carbonyl and aliphatic groups. Methylene blue (MB) adsorption capacity was used as an indicator of the quality of the biochar. Artificial neural networks (ANN) model was developed to predict the quality of the biochar based on operational conditions of biochar production (parent biomass type, particle size, pyrolysis temperature). The model successfully predicted the MB adsorption capacity of the biochar. The model is a very useful tool to predict the performance of biochar for water treatment purposes or assessing the general quality of a design biochar for specific application.  相似文献   

11.
The pyrolysis of biomass material results in pyroligneous acid (PA) and biochar, among other by-products. In agriculture, PA is recognized as an antimicrobial agent, bio-insecticide, and bio-herbicide due to antioxidant activity provided by a variety of constituent materials. Application of PA to crop plants and soil can result in growth promotion, improved soil health, and reduced reliance on polluting chemical crop inputs. More detailed information regarding chemical compound content within PA and identification of optimal chemical profiles for growth promotion in different crop species is essential for application to yield effective results. Additionally, biochar and PA are often applied in tandem for increased agricultural benefits, but little is known regarding the optimal proportion of each crop input. This work reports on the effect of combined applications of different proportions of PA (200- and 800-fold dilutions) and chemical fertilizer rates (100%, 75%, 50%, and 0%) in the presence or absence of biochar on Komatsuna (Brassica rapa var. perviridis, Japanese mustard spinach) plant growth. To elucidate the chemical composition of the applied PA, four different spectroscopic measurements of fluorescence excitation were utilized for analysis—excitation-emission matrix, ion chromatography, high-performance liquid chromatography, and gas chromatography-mass spectrometry. It was determined that PA originating from pyrolysis of Japanese pine wood contained different classes of biostimulants (e.g., tryptophan, humic acid, and fulvic acid), and application to Komatsuna plants resulted in increased growth when applied alone, and in different combinations with the other two inputs. Additionally, application of biochar and PA at the higher dilution rate increased leaf accumulation of nutrients, calcium, and phosphorus. These effects reveal that PA and biochar are promising materials for sustainable crop production.  相似文献   

12.
随着化石资源的日益枯竭,寻求可替代清洁能源已成为全球重大课题。生物质是一种可再生的清洁能源,目前人们尝试通过利用生物质转化缓解日益增长的能源需求。杂多酸是应用在清洁工艺中的重要催化剂,结构和酸度的设计调变性及较高的热稳定性,使其广泛用于生物质的水解转化反应平台。目前固体杂多酸在水溶剂、有机溶剂及两相体系中降解生物质有着各自不同的优缺点。本文综述了杂多酸在不同反应体系中水解转化生物质制备精细化学品的研究进展,并对其在生物质水解转化利用中的应用前景进行了展望。  相似文献   

13.
A comparative evaluation of different biomasses allows the choice that presents the best potential as fuel for energy production. The knowledge of the thermal and kinetics parameters of the biomass in the process of thermal conversion is fundamental as their chemical and physical characterization. Various methodologies have been developed for the determination of kinetic parameters as apparent activation energy and reaction order from the thermogravimetric analysis. In this work, the apparent activation energy needed to break the bonds of hemicelluloses and cellulose of rice husk and elephant grass during the thermal conversion was evaluated according to the kinetics models of Flynn and Wall and Model Free Kinetics developed by Vyazovkin. The biomass elephant grass and rice husk were characterized for moisture, ash and volatile matter by ASTM E871, ASTM E1755, ASTM E872, respectively, and fixed carbon by difference. The percentage of carbon, hydrogen, nitrogen, and oxygen were determined by ultimate analysis. The elephant grass showed to be more suitable for production of bio-oil through pyrolysis due to the higher percentage of volatile, less ash content and less energy required to break the bonds of hemicellulose and cellulose than rice husk in the thermal conversion process.  相似文献   

14.
The conversion of renewable feedstocks into new added-value products is a current hot topic that includes the biodiesel industry. When converting vegetable oils into biodiesel, approximately 10% of glycerol byproduct is produced. Glycerol can be envisaged as a chemical platform due to its chemical versatility, as a scaffold or building block, in producing a wide range of added-value chemicals. Thus, the development of sustainable routes to obtain glycerol-based products is crucial and urgent. This certainly encompasses the use of raw carbonaceous materials from biomass as heterogeneous acid catalysts. Moreover, the integration of surface functional groups, such as sulfonic acid, in carbon-based solid materials, makes them low cost, exhibiting high catalytic activity with concomitant stability. This review summarizes the work developed by the scientific community, during the last 10 years, on the use of biochar catalysts for glycerol transformation.  相似文献   

15.
The development of a new electrolytic water hydrogen production coupling system is the key to realize efficient and low-cost hydrogen production and promote its practical application. Herein, a green and efficient electrocatalytic biomass to formic acid (FA) coupled hydrogen production system has been developed. In such a system, carbohydrates such as glucose are oxidized to FA using polyoxometalates (POMs) as the redox anolyte, while H2 is evolved continuously at the cathode. Among them, the yield of glucose to FA is as high as 62.5 %, and FA is the only liquid product. Furthermore, the system requires only 1.22 V to drive a current density of 50 mA cm−2, and the Faraday efficiency of hydrogen production is close to 100 %. Its electrical consumption is only 2.9 kWh Nm−3 (H2), which is only 69 % of that of traditional electrolytic water. This work opens up a promising direction for low-cost hydrogen production coupled with efficient biomass conversion.  相似文献   

16.
Biomass splitting into gases and solids using flash light irradiation is introduced as an efficient photo-thermal process to photo-pyrolyze dried natural biomass powders to valuable syngas and conductive porous carbon (biochar). The photo-thermal reactions are carried out in a few milliseconds (14.5 ms) by using a high-power Xenon flash lamp. Here, dried banana peel is used as a model system and each kg of dried biomass generates ca. 100 L of hydrogen and 330 g of biochar. Carbon monoxide and some light hydrocarbons are also generated providing a further increase in the high heating value (HHV) with an energy balance output of 4.09 MJ per kg of dried biomass. Therefore, biomass photo-pyrolysis by flash light irradiation is proposed as a new approach not only to convert natural biomass wastes into energy, such as hydrogen, but also for carbon mitigation, which can be stored or used as biochar.

Biomass splitting into gases and solids using flash light irradiation is introduced as an efficient photo-thermal process to photo-pyrolyze dried natural biomass powders to valuable syngas and conductive porous carbon (biochar).  相似文献   

17.
《Analytical letters》2012,45(3):532-538
Recently, there has been increased focus on biochar materials due to their ability to sequester carbon for long-term in soil. In the production of biochar or charcoal, plant biomass is heated in a low or no oxygen environment. This process results in a product with unique characteristics. But there is limited research on the standardization of methods for determining total carbon (C) and nitrogen (N) in the biochar materials whose properties vary by feedstock type and pyrolytic conditions. The objective of this study was to determine the oxygen dosing time (OT) and dose (OD) for total organic carbon (TC) and nitrogen (TN) analysis in biochar materials by dry combustion method (using Vario Max CNS analyzer). Central composite rotatable design was used to determine the effect of five levels of oxygen dosing time (OT) and dosing level (OD) on measurement of total carbon and total nitrogen in four types of plant originated biochars. OT and OD level interaction had significant impact on the measurement of TC and TN in all types of biochar materials. Optimum levels of OT and OD were determined as 103 to 110 sec and 180 to 232 ml/min, respectively.  相似文献   

18.
Using bamboo powder biochar as raw material, high-quality meso/microporous controlled hierarchical porous carbon was prepared—through the catalysis of Fe3+ ions loading, in addition to a chemical activation method—and then used to adsorb copper ions in an aqueous solution. The preparation process mainly included two steps: load-alkali leaching and chemical activation. The porosity characteristics (specific surface area and mesopore ratio) were controlled by changing the K2CO3 impregnation ratio, activation temperature, and Fe3+ ions loading during the activation process. Additionally, three FBPC samples with different pore structures and characteristics were studied for copper adsorption. The results indicate that the adsorption performance of the bamboo powder biochar FBPC material was greatly affected by the meso/micropore ratio. FBPC 2.5-900-2%, impregnated at a K2CO3: biochar ratio of 2.5 and a Fe3+: biochar mass ratio of 2%, and activated at 900 °C for 2 h in N2 atmosphere, has a very high specific surface area of 1996 m2 g−1 with a 58.1% mesoporous ratio. Moreover, it exhibits an excellent adsorption capacity of 256 mg g−1 and rapid adsorption kinetics for copper ions. The experimental results show that it is feasible to control the hierarchical pore structure of bamboo biochar-derived carbons as a high-performance adsorbent to remove copper ions from water.  相似文献   

19.
Yang  Jie  Gao  Ge  Zhu  Zhi  Yu  Xiuna 《Research on Chemical Intermediates》2022,48(6):2313-2323

This study prepared a biochar-based photocatalyst (Co–Al LDH–C) via facile ultrasonic-assisted solvent treatment. The Co–Al LDH–C photocatalyst shows better photocatalytic activity in CO2 reduciton than the pure Co–Al LDH without biochar modification. The Co–Al LDH–C affords a CO generation rate of 29.2 µmol g?1. The enhanced CO2 reduction activity is attributed to the biochar in Co–Al LDH enhanced the light absorption property and separation efficiency of the charge carriers. Additionally, a mechanism insight of Co–Al LDH reduction CO2 is also investigated by a series of characterizations and experiments results. This work offers a new insight for CO2 reduction by waste utilization of biomass and improved the performance of Co–Al LDH, and extends the broad potential application of biochar-based photocatalyst in the photocatalytic conversion from solar to carbon resource.

  相似文献   

20.
Biochar from forest biomass and its remains has become an essential material for environmental engineering, and is used in the environment to restore or improve soil function and its fertility, where it changes the chemical, physical and biological processes. The article presents the research results on the opportunity to use the pyrolysis process to receive multifunctional biochar materials from oak biomass. It was found that biochars obtained from oak biomass at 450 and 500 °C for 10 min were rich in macronutrients. The greatest variety of the examined elements was characterized by oak-leaf pyrolysate, and high levels of Ca, Fe, K, Mg, P, S, Na were noticed. Pyrolysates from acorns were high in Fe, K, P and S. Oak bark biochars were rich in Ca, Fe, S and contained nitrogen. In addition, biomass pyrolysis has been found to improve energy parameters and does not increase the dust explosion hazard class. The oak biomass pyrolytic at 450 and 500 °C after 10 min increases its caloric content for all samples tested by at least 50%. The highest caloric value among the raw biomass tested was observed in oak bark: 19.93 MJ kg−1 and oak branches: 19.23 MJ kg−1. The mean and highest recorded Kst max were 94.75 and 94.85 bar s−1, respectively. It can be concluded that pyrolysis has the potential to add value to regionally available oak biomass. The results described in this work provide a basis for subsequent, detailed research to obtain desired knowledge about the selection of the composition, purpose, and safety rules of production, storage, transport and use of biochar materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号