首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research aimed to prepare smart cotton fabrics with multi functions for antibacterial activity, UV protection and electrical conductivity via in situ coating with conductive polymer and conductive hydrogel. Therefore, 3-(furan-2-carboamido) propionic acid was synthesized followed by polymerization using ceric ammonium nitrate. In addition, cotton fabrics coated with 3-(furan-2-carboamido) propionic acid via in situ polymerization and by the hydrogel that based on poly (3-(furan-2-carboamido) propionic acid) and gelatin which have been performed via in situ gelation process. The chemical structure and morphology of the 3-(furan-2-carboamido) propionic acid (monomer) and the synthesized polymer (PFu) were investigated by H1NMR, IR, SEM, TGA and DSC. Where, the treated fabrics (PFu-T and PFu-G-T) are characterized by SEM, FTIR and contact angle. Furthermore, the AC electrical conductivity and dielectric properties of PFu, PFu-T, PFu-G-T and blank were investigated over the frequency range of 20 Hz–10 MHz at room temperature using impedance spectroscopy where the electric conductivity values are 1.74 × 10-5, 7.5 × 10-8, 4 × 10-7, 8.24 × 10-11 (S·cm)-1, respectively. In addition, the anti-bacterial activity of PFu-T, PFu-G-T and blank was assessed versus gram-positive and gram-negative bacteria where, PFu-G-T shows activity against Escherichia coli and Staphylococcus aureus. Moreover, PFu-T, PFu-G-T showed high UV protection especially for PFu-G-T.  相似文献   

2.
A novel environmentally friendly flame-retardant compound, diethyl 3-(triethoxysilanepropyl) phosphoramidate (DTP) was synthesized via a simple one-step procedure with good yield and characterized by FT-IR and 1H-NMR, 31P-NMR and 29Si-NMR. The synthesized compound was coated onto cotton fabrics with different levels of add-ons (5–17 mass%) using the traditional pad-dry-cure method. SEM and XPS were conducted to characterize the surfaces of the coated cotton fabrics. The XPS results showed that DTP was attached to cotton through covalent bond. Cone calorimeter test showed that the cotton fabric treated with DTP became less flammable due to the lower HRR, THR and CO2/CO ratio. The modified cotton fabrics exhibited efficient flame retardancy, which was evidenced by limiting oxygen index (LOI) and vertical flammability test. Cotton fabrics treated with DTP in 5–17 mass% add-ons had high LOI values of 23–32%. Thermogravimetric analysis results show that the usage of DTP promotes degradation of the cotton fabrics and catalyzes its char formation.  相似文献   

3.
This study concerns the organic–inorganic hybrid coating of silica sol based on dyed cotton, silk and wool fabrics in order to increase the repellence to capsicum oil via adding methyltriethoxysilane, octyltriethoxysilane, hexadec-ltrimethoxysilane or tridecafluorooctyltriethoxysilane (FAS) in the inorganic silica sol. The dyed cotton fabric treated with hybrid silica sol doped with FAS (F-silica sol, FAS 4 %) presents oil-repellent capability, and the contact angles of capsicum oil on the treated cotton, silk and wool fabrics are 98.5°, 111.59° and 122.15°, respectively. A high FAS concentration (20 %) can improve the oil-repellent ability to 5 grades comparing to the untreated fabrics. The color strengths (K/S) of the coated fabrics change slightly, while the maximum absorption wavelengths of the coated fabrics are the same as the untreated fabrics. Although the drape coefficient of cotton fabric is increased to 54 % from 39 % after coated with F-silica sol, the effect is not significant. Compared to the weight gain rate of untreated cotton, silk and wool samples (1.89, 1.23 and 2.38 %), the weight gain rate of the cotton, silk and wool samples coated with F-silica sol are 6.99, 4.76 and 7.69 %, respectively. The calculated sol–gel weight gains (5.10, 3.53 and 5.31 %) of coated fabrics indicate that the silica coating is subsistent on the fiber surfaces.  相似文献   

4.
The superhydrophobic cotton fabrics were prepared by combining the coating of titanium dioxide (TiO2) with the subsequent dodecafluoroheptyl-propyl-trimethoxysilane (DFTMS) modification. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements revealed that the nanosized TiO2 sphere consisted of granular rutile. The TiO2 layer coated on the cotton altered both the surface roughness for enhancing the hydrophobicity and UV-shielding property. The cotton fabric samples showed excellent water repellency with a water contact angle as high as 162°. The UV-shielding was characterized by UV-vis spectrophotometry, and the results indicated that the fabrics could dramatically reduce the UV radiation. The photocatalytic progress showed that organic stains were successfully degraded by exposure of the stained fabric to UV radiation. Such multifunctional cotton fabrics may have potentials for commercial applications.  相似文献   

5.
Zhang  Meiling  Jiang  Shuai  Han  Fuyi  Chen  Heping  Wang  Ni  Liu  Liying  Liu  Lifang 《Cellulose (London, England)》2022,29(6):3529-3544

Multifunctional materials for water purification have attracted significant attention due to the increased water pollution problems. However, fabricating the low-cost, effective, and recyclable separation material for wastewater containing various hazardous substances is still a challenge. Herein, we developed an Ag/TiO2@PDMS coated cotton fabric with self-cleaning ability, high flux, superior visible-light photocatalytic ability, and recyclability via the “powder?+?glue” strategy. The composites are superhydrophobic (water contact angle 157°) and show high separation efficiency. After 20 times of repeated use, the separation efficiency remains 16,322 Lm?2 h?1, and methylene blue (MB) 's degradation rate remains almost unchanged. The high oil purification, catalytic property, excellent stability in harsh conditions, and recyclability enable the material as a satisfactory candidate for water purification.

Graphical abstract
  相似文献   

6.
A novel coating formulation to impart ultraviolet (UV) protection property to cotton, Polyethylene trephethalate (PET) and cotton/PET fabrics was prepared and gamma rays as an ionizing radiation was utilized for surface curing. Natural occurring aluminum potassium sulfate (Alum) was used individually and in binary coat with Zinc Oxide (ZnO), to induce the UV-blocking properties. It was found that using Alum (0.3 g/ml) caused a prompt increase in ultraviolet protection factor (UPF) over the uncoated fabrics. Moreover, the incorporated ZnO in the binary coat increased the UPF for two to threefold than the stand-alone Alum coating, specially in case of PET coated fabric. Water absorbance and moisture regain of ZnO and Alum/ZnO coated fabrics showed a decrease over the blank samples, due to the usage of oligomer/monomer combination. On contrary, Alum showed a hydrophilic effect with the increase in its content in the formulation. Surface Electron Microscope showed the homogenous coating of fibers. X-ray diffraction (XRD), energy dispersive X-ray (EDX) and water vapor permeability were also tested for coated samples.  相似文献   

7.
In this paper, we systematically address the performance of cellulose nanocrystals (CNs) coated flexible food packaging films. Firstly, the morphology of CNs from cotton linters and homogeneity of its coating on different substrates were characterized by transmission electronic microscopy and atomic force microscopy. Then, the 1.5 μm thick CNs coating on polyethylene terephthalate (PET), oriented polypropylene, oriented polyamide (OPA), and cellophane films were characterized for their mechanical, optical, anti-fog, and barrier properties. CNs coating reduces the coefficient of friction while maintaining high transparency (~90 %) and low haze (3–4 %) values, and shows excellent anti-fog properties and remarkable oxygen barrier (oxygen permeability coefficient of CNs coating, P’O2, 0.003 cm3 μm m?2 24 h?1 kPa?1). In addition, the Gelbo flex test combined with oxygen permeance (PO2) measurements and optical microscopy are firstly reported for evaluating the durability of coatings, revealing that the CNs coated PET and OPA provide the best performance among the investigated coated films. CNs are therefore considered to be a promising multi-functional coating for flexible food packaging.  相似文献   

8.
A novel and efficient process is reported for fabrication of electroconductive, self-cleaning, antibacterial and antifungal cellulose textiles using a graphene/titanium dioxide nanocomposite. Cotton fabric was loaded with graphene oxide using a simple dipping coating method. The graphene oxide-coated cotton fabrics were then immersed in TiCl3 aqueous solution as both a reducing agent and a precursor to yield a fabric coated with graphene/titanium dioxide nanocomposite. The crystal phase, morphology, microstructure and other physicochemical properties of the as-prepared samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and UV-Vis reflectance spectroscopy. Electrical resistance, self-cleaning performance, antimicrobial activity and cytotoxicity of treated fabrics were also assessed. The electrical conductivity of the graphene/titanium dioxide nanocomposite-coated fabrics was improved significantly by the presence of graphene on the surface of cotton fabrics. The self-cleaning efficiency of the treated fabrics was tested by degradation of methylene blue in aqueous solution under UV and sunlight irradiations. The results indicated that the decomposition rates of methylene blue were improved by the addition of graphene to the TiO2 treatment on fabrics. Moreover, the graphene/titanium dioxide nanocomposite-coated cotton samples had negligible toxicity and possessed excellent antimicrobial activity.  相似文献   

9.
N-halamine silane syntheses and coatings of cotton fabrics as siloxanes were addressed for a series of silanes. The coated fabrics were chlorinated by exposure to dilute sodium hypochlorite with a range of chlorine loadings from 0.20% to 0.26%. Two types of N–Cl moieties were involved in the N-halamine siloxanes, amine and amide. The siloxane-coated cotton swatches were very effective in inactivating Escherichia coli O157:H7 and Staphylococcus aureus, each in 10 min contact time. The N–Cl bond and compound stabilities under UV irradiation and ambient light exposure were also investigated. Both UV and laboratory light stability tests show that most of the chlorine on cotton coated with 3-(3-triethoxysilylpropyl)-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione could be regenerated after irradiation, while most of the lost chlorine from 5,5-dimethyl-3-(3′-triethoxysilylpropyl)hydantoin and 4-[3-triethoxysilylpropoxyl]-2,2,6,6-tetramethylpiperidine could not be recovered upon rechlorination.  相似文献   

10.
The outstanding advantages of N-halamine materials over other antimicrobial materials are their durable and rechargeable antimicrobial properties, as well as their efficacies in inactivating a broad spectrum of pathogens. Theoretically, the oxidative chlorine of antimicrobial cotton coated with N-halamine hydantoin diol can be restored upon loss of its biocidal efficacy after exposure to ultraviolet light. In this work nano-titania particles were added into the coating solutions containing N-halamine diol and 1,2,3,4-butanetetracarboxylic acid (BTCA), and the coatings were applied to produce antimicrobial cellulose with improved UV stability. The treated cotton fabrics were characterized by FT-IR, SEM, XRD, and XPS. The effects of the coatings on tensile strength and wrinkle recovery angle were investigated. Biocidal efficacies of fabrics coated with hydantoin diol and diol/TiO2 against Staphylococcus aureus (ATCC 6538) and Escherichia coli O157:H7 (ATCC 43895) were determined using a modified AATCC 100-1999 method and showed excellent antimicrobial properties against these two bacterial species within a brief contact times. It was found that the addition of Nano-TiO2 in the antimicrobial coatings, especially rutile titanium dioxide, could improve the UV light stability of the chlorinated fabrics coated with hydantoin diol significantly. The UV light stability of N-halamine coatings were enhanced with increasing amounts of rutile TiO2.  相似文献   

11.
A diblock copolymer consisting of a sol-gel-forming block and a fluorinated block was used to coat cotton fabrics, yielding textiles that were highly oil- and water-repellent. The coating procedure was simple. At grafted polymer amounts of as low as 1.0 wt %, water, diodomethane, hexadecane, cooking oil, and pump oil all had contact angles surpassing 150° on the coated cotton fabrics and were readily rolled. The liquids were not drawn into the interfiber space by the coated fabrics. Rather, droplets of the nonvolatile liquids such as cooking oil retained their beaded shapes for months with minimal contact angle changes. When forced into water, the coated fabrics trapped an air or plastron layer and this plastron layer was stable for months. In addition, the coating had high stability against simulated washing, and the mechanical properties were essentially identical to those of uncoated cotton fabrics.  相似文献   

12.
Preparation and characterization of lamellar magnesium hydroxide (Mg(OH)2) thin films on cotton fabrics are reported in this paper. Mercerized cotton fabrics were treated with citric acid, so carboxyl groups were introduced to the surface of the fabrics. Mg(OH)2 seeds were first adsorbed on the citric acid‐treated cotton fabrics and then Mg(OH)2 thin films grew on the fabric through secondary growth method. Kinetics and isotherm studies found that the adsorption of Mg(OH)2 seeds on citric acid‐treated cotton fabrics followed pseudo second‐order kinetic model and Langmuir isotherm. This indicated that Mg(OH)2 seeds adsorption was monolayer chemical adsorption driven by electric attraction between positively charged Mg(OH)2 seeds and ? COO? ions on the cotton fiber surface. The X‐ray diffraction (XRD) and SEM characterizations of the Mg(OH)2 thin films covered cotton fabrics found that standing flaky Mg(OH)2 crystals formed a shell of porous but continuous network on cotton fabric surface. Owing to the Mg(OH)2 thin film covering, the fabric had fireproof property, lower thermal conductivity and higher optical absorbance in the UV, Vis and IR regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Cheng  Deshan  Liu  Yuhang  Yan  Changwang  Zhou  Yang  Deng  Zhongmin  Ran  Jianhua  Bi  Shuguang  Li  Shengyu  Cai  Guangming  Wang  Xin 《Cellulose (London, England)》2021,28(10):6727-6738
Cellulose - Multifunctional cotton fabrics were fabricated by coating of anionic waterborne polyurethane (WPU)/Cu2-XSe. The surface morphology of WPU/Cu2-XSe coated cotton fabric was characterized...  相似文献   

14.
Control of the surface hydrophilicities and enzymatic hydrolyzability of hydrophobic aliphatic polyesters such as poly(ε‐caprolactone) (PCL) and poly(L ‐lactide) [i.e. poly(L ‐lactic acid) (PLLA)] was attempted by coating with hydrophilic poly(vinyl alcohol) (PVA). The PVA coating was carried out by immersion of the PCL and PLLA films in PVA solutions. The effects of PVA coating on the hydrophilicities were monitored by dynamic contact angle measurements, while the enzymatic hydrolyzability of the PVA‐coated PCL and PLLA films was evaluated by the weight losses after Rhizopus arrhizus lipase‐ and proteinase K‐catalyzed hydrolysis, respectively. It was found that the PVA coating successfully enhanced the hydrophilicities of the aliphatic polyester films and significantly suppressed enzymatic hydrolyzability of the aliphatic polyester films, excluding the PCL film coated at a very low concentration such as 0.01 g · dL?1 and the crystallized PLLA film coated at 1 g · dL?1, for which slight enhancement and no significant enhancement, respectively, were observed in the enzymatic hydrolyzability. Moreover, the hydrophilicities and enzymatic hydrolyzability of the aliphatic polyester films were controllable to some extent by varying the PVA solution concentration and the film crystallinity.

Advancing contact angle (θa) of PCL, PLLA‐C, and PLLA‐A films before and after the PVA coating by immersion in 1 g · dL?1 solution.  相似文献   


15.
A novel and simple coating method was developed by coating bovine serum albumin (BSA) onto the inner surface of a fused-silica capillary, to avoid the adsorption of analytes during CE. The advantage presented here was that the coating process is more simple, fast, stable, and reproducible. The coated capillary avoided the adsorption of analytes onto the inner surface of a fused-silica capillary and might be a promising candidate for separation of complex biological samples with further development. Meanwhile, the efficiencies of the coated capillary were evaluated by EOF, chromatographic peak shape, and theoretical plate number (N m?1) of RNase A. The optimal coating conditions were obtained from the results. The pH value of coating buffer PB was 4.2, the standing time was 12 h at 4 °C, and the coating concentration of BSA was 1.5 mg mL?1. The stability of the coating on the inner wall of the capillary and the reproducibility of the coated capillaries were good. The theoretical plate number values of RNase A were over 1.3 × 105 (N m?1) in the coated capillary. After successive electrophoresis for 48 h using the coated capillary, the RSD values of EOF and the theoretical plate number were 4.14 % and 9.14 %, respectively. In addition, the RSD values of EOF and the theoretical plate number (N m?1) in the coated capillaries were 13.19 % and 8.96 %, respectively. Finally, the coated capillary was successfully applied to separate the mixture of four basic proteins (RNase A, lysozyme, trypsin and myoglobin).  相似文献   

16.

The prevention of bacteria colonization by immobilizing proteins with antimicrobial activity onto cotton fabrics was investigated. Such coatings have potential applications in medical dressing materials used in wound care and healing. Two antimicrobial proteins lysozyme and hydramacin-1 (HM-1) were surface immobilized through two linkers (3-aminopropyl) triethoxysilane (APTES) and citric acid in the presence of the water soluble carbodiimide coupling reagent 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate. Surface composition analysis by attenuated total reflection-Fourier transform infrared and X-ray photoelectron spectroscopies confirmed formation of the protein-cellulose conjugates. Antimicrobial activities of the different functionalized surfaces were found to vary between APTES and citric acid directed coatings. Citric acid immobilized lysozyme treated samples demonstrated superior activity against Gram-positive Bacillus subtilis, whereas APTES immobilized HM-1 treated samples demonstrated an advantage in inhibiting the growth of Gram-negative Escherichia coli. The antibacterial activity and stability of citric acid immobilized protein fabrics following sonication, boiling and chemical treatment were noticeably higher than that of the corresponding APTES immobilized protein fabrics. The dual coating of fibers with both antimicrobial proteins afforded efficient antimicrobial activities against both bacterial species. The results suggest that coating cotton fibers with antimicrobial proteins and peptides represents a feasible approach for developing active surfaces that prohibit growth and colonization of bacterial strains and can be potentially used in medical cotton-based fabrics.

  相似文献   

17.
A simple, environmentally benign and energy efficient process for fabricating single faced superhydrophilic/hydrophobic cotton fabrics by controlling surface texture and chemistry at the nano/microscale is reported here. Stable ultra-hydrophobic surfaces with advancing and receding water droplet contact angles in excess of 146° as well as extreme superhydrophilic surfaces are obtained. Hydrophobic water-repellent cotton fabrics were obtained following plasma treatment through diamond-like carbon (DLC) coating by plasma enhanced chemical vapour deposition. The influence of changing different precursor’s plasma pre-treatments such as H2, Ar or O2 on the properties of DLC coatings is also evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, and analysed in terms of contact angle measurements. Because of the DLC coating, the coated fabric showed to endure its superhydrophobic character even after 12 months.  相似文献   

18.
Thin films of colloidal silica were deposited on cotton fibers via layer-by-layer (LbL) assembly in an effort to reduce the flammability of cotton fabric. Negatively charged silica nanoparticles of two different sizes (8 and 27 nm) were paired with either positively charged silica (12 nm) or cationic polyethylenimine (PEI). PEI/silica films were thicker due to better (more uniform) deposition of silica particles that contributed to more than 90% of the film weight. Each coating was evaluated at 10 and 20 bilayers (BL). All coated fabrics retained their weave structure after being exposed to a vertical flame test, while uncoated cotton was completely destroyed. Micro combustion calorimetry confirmed that coated fabrics exhibited a reduced peak heat release rate, by as much as 20% relative to the uncoated control. The 10 BL PEI-8 nm silica recipe was the most effective because the coating is relatively thick and uniform relative to the other systems. Soaking cotton in basic water (pH 10) prior to deposition resulted in better assembly adhesion and flame-retardant behavior. These results demonstrate that LbL assembly is a useful technique for imparting flame retardant properties through conformal coating of complex substrates like cotton fabric.  相似文献   

19.
Gold nanoparticles (AuNPs) have been synthesized by greener method using chloroauric acid as precursor and extract of Acorus calamus rhizome as reducing agent. Formation of AuNP was confirmed by the presence of Surface Plasmon Resonance (SPR) peak in UV–Visible spectral analysis. XRD and FT-IR spectral analyses were performed for characterization. SEM images show spherical morphology and HR-TEM images reveal nanosize of AuNPs. The AuNPs were then coated on cotton fabric by pad-dry-cure method and characterized by SEM with EDAX technique. The results reveal the deposition of AuNPs on the surface of cotton fabric. Uncoated cotton, neat extract coated cotton and extract containing AuNPs coated cotton fabrics were then tested for antibacterial activity against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli) bacterial strains by AATCC 100 test method. It showed that the extract containing AuNPs coated cotton fabric had higher antibacterial activity than other test samples against E. coli. UV-DRS analysis performed on extract containing AuNPs coated cotton fabric showed improved UV-blocking property than uncoated cotton fabric and neat extract coated cotton fabric.  相似文献   

20.
Optimization of curing cotton textiles through self-cleaning property constructs the main goal of the present study. Cotton fabrics with 0.1, 0.3, 0.5, 1 and 1.5 on weight of bath percent were cured by nano titanium dioxide (P25 Degussa) with cross-link and non cross-link methods. In this study, succinic acid was used as a cross-link agent to attach TiO2 to the cotton. The amount of loaded titania particles to cotton fabrics and the thermal behavior of cured samples were studied by the burning method and thermogravimetric analysis, respectively. Self-cleaning degree of cured samples, stained with natural and synthesized dyes under irradiation of 20 and 400 W UV lamps was investigated by a reflectance spectrophotometer. The structure and morphology of treated cotton fabrics were investigated using scanning electron microscopy and crystallinity of titania coatings by X-ray diffraction spectroscopy. The tearing strengths of titania-coated cotton fabrics before and after light irradiation were measured. Results showed that the stability of nano TiO2 coating and self-cleaning degree of treated samples with cross-link method were much higher than those of non cross-link method, and cotton cellulosic chains were not decomposed by the photocatalytic activity of titania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号