首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
İsa Sıdır 《Molecular physics》2017,115(19):2451-2459
Six new low-band-gap copolymers of donor–donor–acceptor (D-D-A) architecture have been designed using density functional theory and time-dependent density functional theory methods in order to use them in organic photovoltaic cell (OPVC). Phenanthro[3,4-d:9,10-d′]bis([1,2,3]thiadiazole)-10,12-dicarbonitrile moiety has been used as an acceptor for all compounds. We insert benzo[1,2-b:4,5-b′]dithiophene and N,N-diphenylbenzo[1,2-b:4,5-b′]dithiophen-2-amine units as donor to complete designing of copolymers. In order to tuning the optical and electronic properties, we have modified the donor unit by substituted with amine, methoxyamine, N-methylenethiophen-2-amine, methoxy, alkoxy moieties. The band gap (Eg), HOMO and LUMO values and plots, open circuit voltage (VOC) as well as optical properties have been analysed for designed copolymers. The optimised copolymers exhibit low-band-gap lying in the range of 1.03–2.24 eV. DPTD-6 copolymer presents the optimal properties to be used as an active layer due to its low Eg (1.03 eV) and a moderate VOC (0.56 eV). Thus, OPVC based on this copolymer in bulk-heterojunction composites with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor has been modelled. Eg and VOC values of composite material DPTD-6:PCBM are found as 1.32 and 0.65 eV, respectively. A model band diagram has been established for OPVC, simulating the energy transfer between active layers.  相似文献   

2.
《Current Applied Physics》2020,20(1):172-177
Doping is a widely-implemented strategy for enhancing the inherent electrical properties of metal oxide charge transport layers in photovoltaic devices because higher conductivity of electron transport layer (ETL) can increment the photocurrent by reducing the series resistance. To improve the conductivity of ETL, in this study we doped the ZnO layer with aluminum (Al), then investigated the influence of AZO on the performance of inverted bulk heterojunction (BHJ) polymer solar cells based on poly [[4,8-bis [(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b’]dithiophene-2,6-diyl]-[3-fluoro-2[(2-ethylhexyl)-carbonyl]-thieno-[3,4-b]thiophenediyl ]] (PTB7):[6,6]-phenyl C71 butyric acid methyl ester (PC71BM). The measured conductivity of AZO was ~10−3 S/cm, which was two orders of magnitude higher than that of intrinsic ZnO (~10−5 S/cm). By decreasing the series resistance (Rs) in a device with an AZO layer, the short circuit current (Jsc) increased significantly from 15.663 mA/cm2 to 17.040 mA/cm2. As a result, the device with AZO exhibited an enhanced power conversion efficiency (PCE) of 8.984%.  相似文献   

3.
以苯并[1,2-b∶4,5-b´]二噻吩-4,8-二酮为原料合成了一种聚合物太阳能电池材料的单体2,6-双(三甲基锡)-4,8-双(2-乙基己氧基)苯并[1,2-b∶4,5-b´]二噻吩. 通过多核1D和2D NMR技术(包括1D 1H、13C、119Sn、117Sn NMR、DEPT、选择性1D TOCSY及2D1H-1H COSY、gHSQC、gHMBC)表征了目标分子结构,完成了 1H、13C、119Sn 与117Sn NMR化学位移归属,并探讨了该化合物的NMR谱线特征.  相似文献   

4.
黄迪  徐征  赵谡玲 《物理学报》2014,63(2):27301-027301
采用poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-?uoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]](PTB7)作为有机发光二极管器件的阳极修饰层,制备了结构为indium tin oxide(ITO)/PTB7(不同浓度)/N,N’-Bis(naphthalen-1-yl)-N,N’-bis(phenyl)benzidine(NPB,40 nm)/8-hydroxyquinoline(Alq3,60 nm)/LiF(1 nm)/Al的系列器件,同时研究了不同浓度的PTB7对器件性能的影响.PTB7的最佳浓度为0.25 mg/mL,器件性能得到明显的改善,起亮电压为4.3 V.当驱动电压为14.6 V时,最大亮度为45800 cd/m2,最大电流效率为9.1 cd/A.与没有PTB7修饰的器件相比,其起亮电压降低了1.9 V,最高亮度提升了78.5%.器件性能提高归因于PTB7的插入使得空穴注入和传输能力大大改善.  相似文献   

5.
以紫外臭氧处理超薄Ag复合MoO3或PEDOT:PSS修饰ITO电极的高效柔性有机太阳能电池。通过优化紫外臭氧处理Ag薄膜的时间,提高了以P3HT:PCBM为有源层的器件的功率转换效率,从1.68%(未经过紫外臭氧处理)提高到2.57%(紫外臭氧处理Ag 1 min)。提高的原因推测是紫外臭氧处理形成了AgOx薄膜,提高了电荷提取并使器件具有高光学透明度、低串联电阻和优异的表面功函数等一些性能。并且,紫外臭氧处理Ag薄膜与MoO3或者PEDOT:PSS复合修饰ITO的器件效率分别得到提高,Ag薄膜与MoO3复合修饰ITO的器件效率从2.02%(PET/ITO/MoO3)提高到2.97%(PET/ITO/AgOx/MoO3),Ag薄膜与PEDOT:PSS复合修饰ITO的器件效率从2.01%(PET/ITO/PEDOT:PSS)提高到2.93%(PET/ITO/AgOx/PEDOT:PSS)。此外,以PBDTTT-EFT:PC71BM为有源层的柔性聚合物太阳能电池效率可达6.21%。基于ITO的柔性光电器件效率的提高主要归于ITO被Ag/PEDOT:PSS或Ag/MoO3修饰后功函数的提高。  相似文献   

6.
The 1H and 13C NMR spectra of sugar (5-methyl [1, 2, 4]-triazino [5, 6-b] indol-3-yl) hydrazones (1), per-0-acetyl aldehydo sugar 1-acetyl-1-(5-methyl [1, 2, 4] triazino [5, 6-b]-indol-3-yl) hydrazones (2), l- (penta-0-acetyl-pentitol-1-yl)-10-methyl [l, 2, 4] triazolo [3′, 4′:3, 4] [l, 2, 4] triazino [5, 6-b]-indoles (3) have been investigated. The 2 D NMR (H, C COSY) spectrum of 2a has been studied.  相似文献   

7.
Vertical phase separation of the polymer and fullerene molecules in bulk heterojunction organic solar cells influences the exciton dissociation, charge carrier transport and collection. This work compares the vertical phase separation of poly[2,1,3‐benzothiadiazole‐4,7‐diyl[4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta [2,1‐b:3,4‐b′]dithiophene‐2,6‐diyl]] (C‐PCPDTBT):[6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) and poly[2,1,3‐benzothiadiazole‐4,7‐diyl[4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta [2,1‐b:3,4‐b′]dithiophene‐siloe2,6‐diyl]] (Si‐PCPDTBT):PC71BM blend films, using X‐ray photoemission spectroscopy depth profiles. The difference between the two polymers is the bridging atom, which is carbon for C‐PCPDTBT and silicon for Si‐PCPDTBT. Si‐PCPDTBT exhibits enhanced polymer chain packing and crystallinity. We believe this enhanced chain packing provides a driving force during film drying which alters the vertical morphology. The different nature of vertical phase separation plays a role in determining the increased device performance observed for Si‐PCPDTBT:PC71BM solar cells. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
《Current Applied Physics》2018,18(5):534-540
We investigated the effect of three different additives (1-chloronaphthalene, 1,8-diiodooctane, diphenylether) on the performance of polymer-polymer solar cells based on a BHJ blend consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) as a donor and poly[[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)] (P(NDI2OD-T2)) as an acceptor. A direct comparison of the efficiency of the solar cells with and without additive indicated that the device using the additive exhibited slightly improved performance. However, the efficiency enhancement was not significant. The optimal ratio of additive differed depending on the properties of the additive. In addition, the performances of polymer-polymer solar cells were not significantly dependent on the type of additive. Identifying the optimal fabrication condition was critical for achieving the highest performance. It is known that the general role of an additive in polymer solar cells based on a BHJ active layer was to induce good phase separation between the donor and acceptor by morphology modification. However, grazing-incidence wide-angle X-ray scattering results showed that no significant morphology change in polymer-polymer active layer was caused by the additive. Rather, our modulated impedance spectroscopy study showed that the performance enhancement in polymer-polymer solar cells with additive was because of improved recombination properties rather than improvements in crystalline morphology.  相似文献   

9.
《Current Applied Physics》2010,10(4):1108-1111
We have developed red phosphorescent organic light-emitting devices operating at low voltages by using triphenylphosphine oxide (Ph3PO) and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) electron transport layers. 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) and tris-(1-phenylisoquinolinolato-C2,N) iridium(III) [Ir(piq)3] were used as host and guest materials, respectively. Small voltage drops across the electron transport layers and direct injection of holes from 4,4′,4″-tris[N-(2-naphthyl)-N-phenyl-amino]-triphenylamine (2-TNATA) hole transport layer into the Ir(piq)3 guests are responsible for the high current density at low voltage, resulting in a high luminance of 1000 cd/m2 at low voltages of 2.8–3.0 V in devices with a structure of ITO/2-TNATA/CBP:Ir(piq)3/DPVBi/Ph3PO/LiF/Al.  相似文献   

10.
13C NMR and 2D (H,H and H,C COSY) spectra of selected examples of sugar (5H-1,2,4-triazino[5,6-b]-indol-3-yl) hydrazones, peracetylated sugar-1-acetyl -1- (5-acetyl-1,2,4-triazino[5,6-b]indol-3-yl)hydrazones, and 10-acetyl-3-(per-0-acetylalditol-1-yl)-1,2,4-triazolo[4′, 3′:2,3][1,2,4]triazino[5,6-b]indole have been reported. The conformation of the latter C-nucleoside analogues have been determined by analysis of their 1H NMR spectra. The D-galacto, D-manno and L-arabino isomers are preponderantly existing in the planar zigzag arrangement of carbon atoms.  相似文献   

11.
Phosphorescent materials are crucial to improve the luminescence and efficiency of organic light emitting diodes (OLED), because its internal quantum efficiency can reach 100%. So the studying of optical and electrical properties of phosphorescent materials is propitious for the further development of phosphorescent OLED. Phosphorescent materials were generally doped into different host materials as emitting components, not only played an important role in emitting light but also had a profound influence on carrier transport properties. We studied the optical and electrical properties of the blue 4,4′-bis(2,2-diphenylvinyl)-1,1′-biphenyl (DPVBi)-based devices, adding a common yellow phosphorescent material bis[2-(4-tert-butylphenyl)benzothiazolato-N,C2′] iridium(acetylacetonate) [(t-bt)2Ir(acac)] in different positions. The results showed (t-bt)2Ir(acac) has remarkable hole-trapping ability. Especially the ultrathin structure device, compared to the device without (t-bt)2Ir(acac), had increased the luminance by about 60%, and the efficiency by about 97%. Then introduced thin 4,4′-bis(carbazol-9-yl)biphenyl (CBP) host layer between DPVBi and (t-bt)2Ir(acac), and got devices with stable white color.  相似文献   

12.
Environmentally friendly Cu2?x S compounds exist in many different mixed phases in nature, while their nanoscale counterparts can be pure phase with interesting localized surface plasmon resonance properties. Because of the complexity of composition and phase, controllable synthesis of Cu2?x S nanocrystals becomes an important scientific issue in colloidal chemistry. In this work, a hot‐injection method is developed to synthesize Cu2?x S nanocrystals by injecting a sulfur precursor into a copper precursor using oleylamine and octadecene as solvents. By varying the reaction parameters (temperature, volume ratio of oleylamine/octadecene, molar ratio of Cu/S in the precursors), hexagonal CuS, monoclinic Cu1.75S, and rhombohedral Cu1.8S, nanocrystals can be selectively synthesized, providing a platform to illustrate the mechanism of crystal phase control. The crystal phase control of Cu2?x S nanocrystals is oleylamine‐determined by controlling the molar ratio of Cu/S in the reaction precursors as well as the ratio of Cu2?x S clusters/Cu+ in the subsequent reaction. More importantly, temperature plays an important role in varying the molar ratio of Cu/S and Cu2?x S clusters/Cu+ in the reaction system, which significantly influences the crystal phase of the resulting Cu2?x S nanocrystals. The understanding into crystal control provides a guideline to realize reproducible phase‐selective synthesis and obtain well‐defined high‐quality materials with precise control.  相似文献   

13.
陈凉君  王维  肖生强  唐新峰 《中国物理 B》2022,31(2):28507-028507
The doping process and thermoelectric properties of donor-acceptor(D-A)type copolymers are investigated with the representative poly([2,6-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophenediyl))(PTB7-Th).The PTB7-Th is doped by Fe Cl;and only polarons are induced in its doped films.The results reveal that the electron-rich donor units within PTB7-Th lose electrons preferentially at the initial stage of the oxidation and then the acceptor units begin to be oxidized at a high doping concentration.The energy levels of polarons and the Fermi level of the doped PTB7-Th remain almost unchange with different doping levels.However,the morphology of the PTB7-Th films could be deteriorated as the doping levels are improved,which is one of the main reasons for the decrease of electrical conductivity at the later stage of doping.The best electrical conductivity and power factor are obtained to be 42.3 S·cm-1;and 33.9μW·mK-1,respectively,in the doped PTB7-Th film at room temperature.The power factor is further improved to 38.3μW·mK-1;at 75℃.This work may provide meaningful experience for development of D-A type thermoelectric copolymers and may further improve the doping efficiency.  相似文献   

14.
A novel fluorescent rhodamine based chemosensor (E)-3′,6′-bis(diethylamino)-2-((2-(pyridin-2-ylmethoxy)benzylidene)amino)spiro[isoindoline-1,9′-xanthen]-3-one, RSP, had been successfully developed and well characterized by NMR, FT-IR and Mass spectroscopy. The chemosensor exhibits high selectivity for Hg2+ over other ions (Ag+, Pb2+, Cu2+, Ni2+, Fe3+, Co2+, Zn2+ and Cd2+) with fluorescence enhancement in ethanol solution. More over the detection limit of the sensor is in the 10?6 M level. The binding ratio of RSP-Hg2+ complex was determined to be 1:1 according to the Job plot. Test strips based on RSP were fabricated, which showed the application of the sensor for detection of mercuric ions in water by naked eyes.  相似文献   

15.
使用两种或者更多种类的富勒烯衍生物作为受体可以使poly(3-己基噻吩)(P3TH)系的混合异质结太阳能电池效率明显提升。这样的提升源于当受体使用富勒烯多重加合物的最低未占轨道(LUMO)提升而使其开路电压升高。虽然其他聚合物也同样能获得高的开路电压,但是大多数的聚合物却不像P3TH一样获得性能提升,在与像苯基-C61-丁酸甲酯 (bis-PCBM)或者the indene-C60 bis-adduct (ICBA)混合后表现出下降的光电流。在此,我们研究这些性能改变的原因。使用[6,6]-苯基C70-丁酸甲酯(PC70BM), ICBA和bis-PC70BM作为受体并且PTB7作为给体,其结构为:ITO/PEDOT:PSS/活性层/LiF/Al,聚合物太阳能电池的表现的性能分别为7.29%, 4.92% 和3.33%。性能的改变可能主要归因于不同受体影响器件激子产生和电荷收集。  相似文献   

16.
Ternary copper indium sulfide (CIS) nanocrystals (NCs) have been synthesized by mixing of binary precursor [CuI(bdpa)2][CuICl2] (1) and/or [CuI(mdpa)2][CuICl2] (2) (where, mdpa and bdpa represent methyl and benzyl ester of 3,5-dimethyl pyrazole-1-dithioic acid, respectively) with InCl3 in a low-temperature solvothermal process. The +1 oxidation state of copper and the atomic ratio Cu to S (1:2) is atomically maintained in the pyrazole-based Cu(I)–S precursor to synthesize phase pure CuInS2. Coordinating solvents like ethylene diamine (EN) and ethylene glycol (EG) have been used in the synthesis without any surfactants. No use of external surfactants in the synthesis of CIS nanoparticles reveals that precursor acts as stabilizing agent. The synthesized nanocrystals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX) studies. The optical property of the nanocrystals shows a pronounced quantum confinement effect in the particles with band gap energy ca. 1.5 eV. The formation mechanism of ternary CIS has been proposed. The pore size distributions of the particles show the average pore diameters 13.1 nm from 1 and 5.3 nm from 2. The calculated values of the specific surface area are 8.123 and 9.577 m2/g for 1 and 2, respectively. The excellent photocatalytic degradation of rose bengal (RB) and rhodamine B (RhB) was demonstrated by the porous CIS nanocrystals.
Graphical abstract Enhanced photocatalytic activity of ternary CuInS2 nanocrystals synthesized from the combination of a binary Cu(I)S precursor and InCl3. Gopinath Mondal, Ananyakumari Santra, Sumanta Jana, Nimai Chand Pramanik, Anup Mondal and Pulakesh Bera
  相似文献   

17.
A new dye, 2,7-bis(4-methoxystyryl)-9,9-bis(2-ethylhexyl)-9H-fluorene, has been synthesized, which is a d-π-d symmetrical-type fluorene derivative. The two-photon absorption (TPA) of this new dye has been experimentally studied by comparable two-photon-induced fluorescence method. This new dye has a TPA cross-section of at 790 nm/13 fs.  相似文献   

18.
Ruthenium polypyridined-derivative complexes are used in dye-sensitized solar cell [DSSC] as a light to current conversion sensitizer. In order to lower the cost of the DSSC the normal transition metals were used to replace the noble metal ruthenium, and some compounds [ML2L′] (M = Pt, Fe, Ni, Zn; L = isonicotinic acid, L′ = maleonitriledithiolate, I = PtL2L′, II = FeL2L′, III = NiL2L′, IV = ZnL2L′) were selected as the replacement. The geometries, electronic structures and optical absorption spectra of these compounds have been studied by using density functional theory (DFT) calculation at the B3LYP/LANL2DZ, B3P86/LANL2DZ, B3LYP/GEN level of theory. All the geometric parameters are close to the experimental values. The HOMOs are mainly on the maleonitriledithiolate groups mixed with fewer characters of the metal atom, the LUMOs are mainly on the two pyridine ligands. This means that the electron transition is attributed to the LLCT. The maximum absorptions of complexes are found to be at 351 nm, 806 nm for compound I, and 542 nm for compound II. The maximum absorptions of complexes are found to be at 884 nm for compound III, and 560 nm for compound IV. This means that those compounds may be as a suitable sensitizer for solar energy conversion applications.  相似文献   

19.
Thin films of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetrone (Ch-diisoQ) were prepared by thermal evaporation technique. Structural properties of these (as-prepared and annealed at 373, 423, 473 and 523 K) films were determined by X-ray diffraction and scanning electron microscopy, which showed that the grain sizes increasing by the annealing effect. The transmittance and reflectance of all Ch-diisoQ thin films were measured in the range 200–2500 nm. Some optical constants such as optical band gap (E g ), dispersion energy (E d ), single oscillator energy (E o ) and optical dielectric constant at a higher frequency (ε ) were calculated at different annealing temperatures. The optical band gap of the samples is decreased with the increase of annealing temperatures due to the increasing of the π-dislocation. Finally, the values of the optical susceptibility, χ(3), were found to be annealing dependence.  相似文献   

20.
A new synthesis and the crystal structure of C12H12N2S2 have been described and redetermined. In order to optimize the geometry of the molecule, the semi empirical methods MNDO, AMI and PM3 were used. The conformation of the energy profile showed that the minimum energy conformation has the torsion angle θ [Cl-Sl-Sl′-Cl′] near 90°. The energy barrier at 0° attributed to the lone pair repulsion of sulphur atoms and interactions between NH…S and H(C6)…S non-bonded atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号