首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reviews the latest developments in protease-catalyzed peptide synthesis focusing on the use of substrate mimetics. The substrate mimetics approach takes advantage of the characteristic of this novel type of substrates to direct the enzyme to recognize an alternative site on the acyl donor, i.e. the site-specific ester leaving group, mediating the acceptance of originally poorly reactive acyl moieties. At first the kinetics and catalytic mechanism of substrate mimetics-mediated reactions are discussed on the basis of hydrolysis, peptide synthesis, protein-ligand docking, and molecular dynamics studies. By the example of the Glu-specific V8 protease and the aromatic amino acid-specific chymotrypsin both the empirical and computer-aided design of specific substrate mimetics is described. The influence of the leaving group specifically recognized by the enzyme is also considered. The benefits of these artificial substrates over common acyl donor components are illustrated by selected synthesis reactions of small peptides, peptide isosteres, non-peptidic carboxylic acid amides, and the coupling of peptide fragments at non-specific ligation sites resulting in biologically active peptide products. Finally, this review focuses on critical syntheses that uses specific-amino acid-containing peptides as the reactants of ligation. Based on these, the restrictions of the substrate mimetics approach is critically discussed and techniques to their overcoming are presented.  相似文献   

2.
Two main drawbacks seriously restrict the synthetic value of proteases as reagents in peptide fragment coupling: (i) native proteolytic activity and, thus, risk of undesired peptide cleavage; (ii) limited enzyme specificities restricting the amino acid residues between which a peptide bond can be formed. While the latter can be overcome by the use of substrate mimetics achieving peptide bond formation at nonspecific ligation sites, the risk of proteolytic cleavage still remains and hinders the wide acceptance of this powerful strategy for peptide coupling. This paper reports on the effect of the trypsin point mutant Asp189Glu on substrate mimetic-mediated reactions. The effect of this mutation on the steady-state hydrolysis of substrate mimetics of the 4-guanidinophenyl ester type and on trypsin-specific Lys- and Arg-containing peptides was investigated. The results were confirmed by enzymatic coupling reactions using substrate mimetics as the acyl donor and specific amino acid-containing peptides as the acyl acceptor. The competition assay verifies the predicted shift in substrate preference from Lys and Arg to the substrate mimetics and, thus, from cleavage to synthesis of peptide bonds. The combination of results obtained qualifies the trypsin mutant D189E as the first substrate mimetic-specific peptide ligase.  相似文献   

3.
In this contribution we describe a general synthesis concept for the in situ preparation of protease specific reactants using methyl thioesters as universal precursors. The precursor esters are readily available by standard synthesis procedures and can be used directly as reactants for protease-mediated peptide coupling reactions. Alternatively, they can serve as initial building blocks for the in situ preparation of various types of substrate mimetics. The synthesis of the latter is achieved by a one-pot spontaneous transthioesterification reaction of the parent thioester (Y-(Xaa)(n)-SMe-->Y-(Xaa)(n)-SR; R: CH(2)CH(2)COOH, CH(2)C(6)H(5), C(6)H(4)NHC(:NH)NH(2)), which proceeds efficiently in both a sequential manner and parallel to the subsequent enzymatic reaction. The resulting substrate mimetics act as efficient acyl donor components and show the typical behavior of substrate mimicry enabling irreversible reactions with originally nonspecific acyl moieties. Neither a workup of the substrate mimetic intermediate nor changes of the reaction conditions during the whole synthesis process are required. Model peptide syntheses using trypsin, alpha-chymotrypsin, and V8 protease as the biocatalysts proved the function of the approach and illustrated its synthetic value for protease-mediated reactions and the compatibility of the approach with state-of-the-art solid-phase peptide ester synthesis methods.  相似文献   

4.
[reaction: see text] We present an irreversible and efficient protease-based method for peptide synthesis which occurs independently of the primary specificity of proteases and also without proteolytic side reactions. The key feature of this approach is the combination of the substrate mimetics strategy with frozen state enzymology. Model reactions catalyzed by several proteases qualify this approach as a powerful concept in the direction of a more universal application of proteases as biocatalysts for peptide ligation.  相似文献   

5.
Peptide mimetics are of considerable interest as bioactive agents and drugs. C-terminally modified peptide mimetics are of particular interest given the synthetic versatility of the carboxyl group and its derivatives. A general approach to C-terminally modified peptide mimetics, based on a urethane attachment strategy and amino acid t-butyl ester-based N-to-C peptide synthesis, is described. This approach is compatible with the reaction conditions generally employed for solution-phase peptide mimetic synthesis. To develop and demonstrate this approach, it was employed for the solid-phase synthesis of peptide trifluoromethyl ketones, peptide boronic acids, and peptide hydroxamic acids. The development of a versatile general approach to C-terminally modified peptides using readily available starting materials provides a basis for the combinatorial and parallel solid-phase synthesis of these peptide mimetic classes for bioactive agent screening and also provides a basis for the further development of solid-phase C-terminal functional group elaboration strategies.  相似文献   

6.
Solid-phase peptide synthesis in the N-to-C direction, opposite to the classical C-to-N direction of peptide synthesis, provides the synthetically versatile C-terminal carboxyl group for further modification into C-terminally modified peptide mimetics. These are of general interest as potential bioactive agents, particularly as protease inhibitors. Elaboration of peptide mimetics on the solid-phase would facilitate synthesis of peptide mimetic combinatorial libraries. This report describes an effective strategy for solid-phase inverse peptide synthesis based on readily available amino acid tert-butyl esters. The potential of this approach for peptide mimetic synthesis is demonstrated by the solid-phase synthesis of two peptide trifluoromethylketones.  相似文献   

7.
Substitution of native amino acids by fluoroalkyl analogues represents a new approach for the design of biologically active peptides with increased metabolic stability as well as defined secondary structure and provides a powerful label for spectroscopic investigations. Here, we introduce a methodology for the incorporation of sterically demanding C(alpha)-fluoroalkyl amino acids into the P(1) position of peptides catalyzed by the commercially available proteases trypsin and alpha-chymotrypsin. The combination of 4-guanidinophenyl ester of C(alpha)-fluoroalkyl amino acids as substrate mimetics with frozen-state reaction conditions provided the most efficient strategy for protease-catalyzed site-specific introduction of this kind of nonnatural amino acids into peptide sequences. Consequently, a library of di-, tri-, and tetrapeptides containing alpha-methyl, alpha-difluoromethyl, and alpha-trifluoromethyl alanine, leucine, and phenylalanine in the P(1) position was synthesized catalyzed by trypsin as well as alpha-chymotrypsin. Trypsin was shown to be the more versatile protease.  相似文献   

8.
Linear hexapeptides featuring the asparagine mimetics alanine-beta-hydrazide, alanine-beta-hydroxylamine, and 1,3-diaminobutanoic acid have been synthesized as oligosaccharyl transferase (OT) substrate mimetics and chemoselectively N-glycosylated to obtain the corresponding neoglycopeptides as OT product mimetics. The effect of glycosylation on the binding of these asparagine surrogates is in stark contrast with the effect of modification of native asparagine. In native N-linked glycosylation, product inhibition is minimal and glycopeptides show very low affinity for OT. In contrast, glycosylation of the substrate mimetics maintains or even improves affinity of the corresponding product mimetic for OT. Conformational considerations suggest that the flexibility of the N-glycosyl linkage in these neoglycopeptides allows them to be accommodated in the OT binding site while the native trans glycosyl amide linkage is rejected. These results provide insight into how OT minimizes product inhibition, thereby ensuring effective substrate turnover.  相似文献   

9.
Proteases are key regulators of many physiological and pathological processes [1,2], and are recognized as important and tractable drug candidates. Consequently, knowledge of protease substrate recognition and specificity promotes identification of biologically relevant substrates, helps elucidating a protease's biological function, and the design of specific inhibitors. Traditional methods for establishing substrate recognition profiles involve the identification of the scissile bond within a given protein substrate by proteomic methods such as Edman degradation. Then, synthetic peptide variants of this sequence can be screened in an iterative fashion to arrive at more optimized substrates. Even though it can be fruitful, this iterative strategy is biased toward the original substrate sequence and it is also tremendously cumbersome. Furthermore, it is not amenable to high throughput analysis. In 1993, Matthew & Wells presented a method for the use of monovalent "substrate phage" libraries for discovering peptide substrates for proteases, in which more than 10(7) potential substrates can be tested concurrently [3]. A library of fusion proteins was constructed containing randomized substrate sequences placed between a binding domain and the gene III coat protein of the filamentous phage, M13, which displays the fusion protein and packages the gene coding for it inside. Each fusion protein was displayed as a single copy on filamentous phagemid particles (substrate phage). This method allows one to rapidly survey the substrate recognition and specificity of individual or closely related members of proteases. Over the past decade, substrate phage screening has shown terrific utility in rapidly determining protease specificity and characterization of substrate recognition profile of proteases. In some cases, the structural insights of the catalytic domain were obtained from comparison of substrate specificity among closely related family of proteases [4-6]. The number of proteases (from various classes) characterized by this approach testifies to its power. Since the initial development of substrate phage library, different versions of the substrate phage cloning vectors have been constructed to further improve the utility of substrate phage display. This review will provide an overview of the construction of substrate phage display libraries, screening of substrate phage libraries, examples of application, summary and future directions.  相似文献   

10.
1,2-Oxaselenolane Se-oxide is a novel cyclic seleninate ester that functions as a remarkably efficient glutathione peroxidase mimetic by catalyzing the reduction of tert-butyl hydroperoxide to tert-butyl alcohol in the presence of benzyl thiol. The seleninate ester can be conveniently generated in situ by oxidation of allyl 3-hydroxypropyl selenide with tert-butyl hydroperoxide. Its catalytic activity surpasses that of several other known GPx mimetics containing cyclic selenenamide structures, which were also tested for comparison.  相似文献   

11.
The screening of a panel of 17 proteases resulted in the selection of 4 serine proteases for the resolution of 3-amino-1-phenylbutane. The latter were used to determine the best acyl donor from a series of N-acyl α-amino acid trifluoroethyl esters selected as peptide mimetics (E factor up to 99). The results were correlated to an automated docking determination of their binding affinities for Subtilisin Novo.  相似文献   

12.
Protein tyrosine phosphatases play important roles in many signaling cascades involved in human disease. The identification of druglike inhibitors for these targets is a major challenge, and the discovery of suitable phosphotyrosine (pY) mimetics remains one of the key difficulties. Here we describe an extension of tethering technology, "breakaway tethering", which is ideally suited for discovering such new chemical entities. The approach involves first irreversibly modifying a protein with an extender that contains both a masked thiol and a known pY mimetic. The extender is then cleaved to release the pY mimetic, unmasking the thiol. The resulting protein is screened against a library of disulfide-containing small molecule fragments; any molecules with inherent affinity for the pY binding site will preferentially form disulfides with the extender, allowing for their identification by mass spectrometry. The ability to start from a known substrate mimimizes perturbation of protein structure and increases the opportunity to probe the active site using tethering. We applied this approach to the anti-diabetic protein PTP1B to discover a pY mimetic which belongs to a new molecular class and which binds in a novel fashion.  相似文献   

13.
ShK toxin is a structurally defined, 35-residue polypeptide which blocks the voltage-gated Kv1.3 potassium channel in T-lymphocytes and has been identified as a possible immunosuppressant. Our interest lies in the rational design and synthesis of type-III mimetics of protein and polypeptide structure and function. ShK toxin is a challenging target for mimetic design as its binding epitope consists of relatively weakly binding residues, some of which are discontinuous. We discuss here our investigations into the design and synthesis of 1st generation, small molecule mimetics of ShK toxin and highlight any principles relevant to the generic design of type-III mimetics of continuous and discontinuous binding epitopes. We complement our approach with attempted pharmacophore-based database mining.  相似文献   

14.
A general methodology has been established for rapid generation and screening of combinatorial glycopeptide library and subsequent mass spectrometric sequencing to identify the mimetics of Galalpha(1,3)Gal epitopes. Using this approach, several active glycopeptide sequences were recognized and found to inhibit the binding of human natural anti-Gal antibodies with comparable IC(50)s to synthetic Galalpha(1,3)Gal oligosaccharides. The most active glycopeptides detected from the library included Gal-Tyr-Trp-Arg-Tyr, Gal-Thr-Trp-Arg-Tyr, and Gal-Arg-Trp-Arg-Tyr. These glycopeptides showed higher affinities to anti-Gal antibodies than known Galalpha(1,3)Gal peptide mimetics, such as DAHWESWL and SSLRGF. Our results suggest that, by combining a peptide sequence (the "functional" mimic part) with a terminal alpha-linked galactose moiety (the "structural" mimic part), the resulting glycopeptide could be a very good Galalpha(1,3)Gal mimetic. Analysis of these active glycopeptides provided first-hand information regarding the binding site of anti-Gal antibodies to facilitate the structurally based design of more potent and stable inhibitors.  相似文献   

15.
gamma-Secretase cleaves the transmembrane domain of the amyloid precursor protein, a process implicated in the pathogenesis of Alzheimer's disease, and this enzyme is a founding member of an emerging class of intramembrane proteases. Modeling and mutagenesis suggest a helical conformation for the substrate transmembrane domain upon initial interaction with the protease. Moreover, biochemical evidence supports the presence of an initial docking site for substrate on gamma-secretase that is distinct from the active site, a property predicted to be generally true of intramembrane proteases. Here we show that short peptides designed to adopt a helical conformation in solution are inhibitors of gamma-secretase in both cells and enzyme preparations. Helical peptides with all d-amino acids are the most potent inhibitors and represent potential therapeutic leads. Subtle modifications that disrupt helicity also substantially reduce potency, suggesting that this conformation is critical for effective inhibition. Fluorescence lifetime imaging in intact cells demonstrates that helical peptides disrupt binding between substrate and protease, whereas an active site-directed inhibitor does not. These findings are consistent with helical peptides interacting with the initial substrate docking site of gamma-secretase, suggesting a general strategy for the development of potent and specific inhibitors of intramembrane proteases.  相似文献   

16.
A combined molecular dynamics simulation and multiple ligand docking approach is applied to study the binding specificity of acetylcholinesterase (AChE) with its natural substrate acetylcholine (ACh), a family of substrate analogues, and choline. Calculated docking energies are well correlated to experimental k(cat)/K(M) values, as well as to experimental binding affinities of a related series of TMTFA inhibitors. The "esteratic" and "anionic" subsites are found to act together to achieve substrate binding specificity. We find that the presence of ACh in the active site of AChE not only stabilizes the setup of the catalytic triad but also tightens both subsites to achieve better binding. The docking energy gained from this induced fit is 0.7 kcal/mol for ACh. For the binding of the substrate tailgroup to the anionic subsite, both the size and the positive charge of the tailgroup are important. The removal of the positive charge leads to a weaker binding of 1 kcal/mol loss in docking energy. Substituting each tail methyl group with hydrogen results in both an incremental loss in docking energy and also a decrease in the percentage of structures docked in the active site correctly set up for catalysis.  相似文献   

17.
1,3-Dipolar cycloaddition of acrylamide with the cyclic nitrone derived from proline tert-butyl ester has been employed in the synthesis of bicyclic Gly-(s-cis)Pro isosteres suitably protected for the Fmoc-based solid phase peptide synthesis. (R)-1-Phenylethylamine was introduced as chiral auxiliary to resolve racemic intermediates and obtain enantiopure compounds. Using methacrylamide as dipolarophile, the analogous Ala-Pro mimetics have been prepared in racemic form, whereas the same strategy applied to methyl itaconate failed to give the corresponding Asp-Pro mimetic.  相似文献   

18.
Combinatorial phage peptide libraries have been used to identify the ligands for specific target molecules. These libraries are also useful for identification of the specific substrates of various proteases. A substrate phage library has a random peptide sequence at the N-terminus of the phage coat protein and an additional tag sequence that enables attachment of the phage to an immobile phase. When these libraries are incubated with a specific enzyme, such as a protease, the uncleaved phage is excluded from the solution with tag-binding macromolecules. This provides a novel approach to define substrate specificity. The aim of this review is to summarize recent progress on the application of the substrate phage technique to identify specific substrates of proteolytic enzymes. As an example, some of our own experimental data on the selection and characterization of substrate sequences for thrombin, a serine protease, and membrane type-1 matrix metalloproteinase (MT1-MMP) will be presented. Using this approach, the canonical consensus substrate sequence for thrombin was deduced from the selected clones. As expected from the collagenolytic activity of MT1-MMP, a collagen-like sequence was identified in the case of MT1-MMP. A more selective substrate sequence for MT1-MMP was identified during a substrate phage screen. The delineation of the substrate specificity of proteases will help to elucidate the enzymatic properties and the physiological roles of these enzymes. Comprehensive screening of very large numbers of potential substrate sequences is possible with substrate phage libraries. Thus, this approach allows novel substrate sequences and previously unknown target molecules to be defined.  相似文献   

19.
A novel template was synthesized for stabilizing β‐hairpin conformations in cyclic peptide mimetics. The template is a diketopiperazine derived formally from L ‐aspartic acid and (2S,3R,4R)‐diaminoproline, the latter being available by an efficient synthetic route from vitamin C. The template was incorporated by solid‐phase peptide synthesis into a cyclic loop mimetic containing the sequence (‐Ala‐Asn‐Pro‐Asn‐Ala‐Ala‐template‐). This mimetic was shown by NMR to adopt a stable β‐hairpin conformation in (D6)DMSO solution. The template may prove to be generally useful for creating small‐molecule mimetics of hairpin loops on proteins of diverse function.  相似文献   

20.
The reactivity of both the ester and amine functions present in β-amino esters was tested in order to obtain the synthesis of enantiopure αvβ3 and α5β1 integrin ligands. CaLB successfully catalyzed both the enantioselective transesterification and the N-acylation of racemic β-amino esters, allowing the isolation of intermediates for the preparation of Arg-Gly-Asp (RGD) mimetic compounds. In particular, a CaLB-catalyzed amidation reaction with unprotected p-aminobenzylamine reduced the number of synthetic steps, thus avoiding protection and deprotection of the intermediate compounds. Following this procedure, RGD mimetics were isolated with high yields and enantiomeric purities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号