首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W/O/W type multiple emulsions were prepared by two step emulsification procedures using an oily lymphographic agent, lipiodol, as an inner oil phase and Pluronic F-68 as a hydrophilic emulsifier contained in the outer aqueous phase. Span 80, Pluronic L-64 and HCO-60 were used as emulsifiers incorporating them into the inner oil phase. The phase volume of the inner and outer aqueous phases and the yield of the w/o/w type multiple emulsions were studied. The dissolution behaviour of the w/o/w type multiple emulsions were determined by a dialysis method employing cellulose tubing. The effect of emulsifier type and the amount of HCO-60 on the stability and prolonged release behavior of the w/o/w type multiple emulsions with or without lecithin, was also examined. The results indicate the HCO-60 is a better emulsifier than Span 80 or Pluronic L-64. Its use improves the stability and the prolonged release behavior of w/o/w type multiple emulsions.  相似文献   

2.
The objective of this work was to obtain water-in-oil (w/o) emulsions with polyglycerol polyricinoleate (PGPR) as emulsifier and to study the effect of the addition of calcium in the dispersed aqueous phase on the stability of these systems. Emulsions were formulated with 0.2, 0.5 and 1.0% w/w PGPR and 10% w/w water containing calcium chloride at varied concentrations or other salts (calcium lactate or carbonate; sodium, magnesium or potassium chloride). The stability of these systems was studied with a vertical scan analyzer during 15 days; coalescence and sedimentation were observed as simultaneous destabilization processes. The increase of PGPR concentration and/or calcium chloride content gave more stable emulsions. The stabilizing effect of calcium salt was attributed to the diminution of the water droplets size, the decrease of the attractive force between water droplets and the increase of the adsorption density of the emulsifier. The viscoelastic parameters of the interfacial film were decreased with increasing calcium and PGPR concentrations. Calcium chloride produced a higher increase of stability than calcium salts with lower dissociation degree. The presence of any assayed salt in the aqueous phase also allowed the stabilization of w/o emulsions with higher water contents.  相似文献   

3.
Different compositions and emulsification protocols were used to prepare stable water-in-oil (w/o) emulsions. Water, mineral oil, and a mixture of Span 80 and Tween 80 surfactants were combined to form emulsions that can be used as reference for electrolyte-free systems. Here, we have proposed emulsions wherein different properties were evaluated. Electrical conductivity measurements indicated that conductivity increases linearly with increasing surfactant content. The emulsions’ flow curves and viscoelastic behaviors were delineated by rheological measurements. Stability studies by centrifugal testing have shown that smaller the surfactant content, lower the stability, for any used stirring speeds. Furthermore, higher the applied mixing rate to make the emulsion, higher the stability, regardless of the amount of surfactant. Electrical field stability analysis showed, for all systems, that critical electric field (CEF) values were dependent on either surfactant amount and emulsion elastic modulus.  相似文献   

4.
Hydrophobic curcumin in temulawak extract and hydrophilic betacyanin in red dragon fruit extract are high-value bioactive compounds with extensive applications in functional food. In this study, these extracts were encapsulated in water-in-oil-in-water (w/o/w) nanoemulsions as a delivery system using a two-step high-energy emulsification method. PGPR and Span 20 were used as lipophilic emulsifiers for the primary w/o emulsion. The most stable w/o/w formulation with the least oil phase separation of 5% v/v consisted of w/o emulsion (15% w/w) and Tween 80 (1.5% w/w) as hydrophilic emulsifier. The formulation was characterized by a 189-nm mean droplet diameter, 0.16 polydispersity index, and –32 mV zeta potential. The freeze–thaw stability may be attributed to the combination of low w/o emulsion content and high Tween 80 concentration in the outer water phase of the w/o/w nanoemulsions used in this study. The IC50 values of the nanoemulsion and the red dragon fruit extract were similar. It means that the higher concentration of curcumin in the nanoemulsions and the lower IC50 value of temulawak extract ensured sufficient antioxidant activities of the w/o/w nanoemulsions.  相似文献   

5.
Water-in-oil emulsion usually forms during waterflooding in some heavy oil reservoirs. The composition and salinity of the injected water critically affect the w/o emulsion droplet size distribution, which control the emulsion stability and emulsion flow in porous media. The aim of the present work is to assess the effect of different sea water salinities on w/o emulsion stability through microscopic imaging. Therefore, w/o emulsions were prepared with different sea water samples, which were synthesized to resemble Persian Gulf, Mediterranean, Red Sea, and North Sea water samples. The results showed that log-normal distribution function predicts very well the experimental data to track the emulsion droplet size distribution, and then it was used for the emulsion stability analysis. It was found that among the four emulsion samples, North Sea emulsion with the lowest NaCl and TDS concentration of 24.12?g/L and 34.44?g/L remained stable up to almost 24 hours, while Red sea emulsion with the highest NaCl and TDS concentration of 32.39?g/L and 41?g/L became unstable after 6-hour period. This indicated that as the brine concentration increases, the w/o emulsion droplets would be larger due to the higher rate of aggregation and coalescence, and the emulsion stability decreases.  相似文献   

6.
Properties of water-in-oil (W/O) nano-emulsion formed by a low-energy emulsification method are described in this work. Nano-emulsions have been formed in water/mixed non-ionic surfactant/decane. Several mixtures of Span 20, Span 80, Tween 20 and Tween 80 were studied. Phase behavior studies and stability studies allowed to determine zones where nano-emulsions can be formed. Bluish and transparent W/O nano-emulsion with droplet sizes as low as 30 nm was formed. Nano-emulsion droplet size was measured by Dynamic Light Scattering. Nano-emulsions stability was studied by multiple light scattering and by dynamic light scattering. The results showed the evolution with time of the average radius droplet. The nano-emulsions prepared showed high kinetic stability for weeks, without phase separation, sedimentation or creaming. Nevertheless, their droplet size increased slightly over time. Stability studies show that nano-emulsion breakdown could be attributed to Ostwald ripening and coalescence mechanism, depending on the water concentration.  相似文献   

7.
Oil-in-water emulsions (60% oil (w/w)) were prepared using whey protein aggregates as the sole emulsifying agent. The effects of whey protein aggregate size (the diameter between 0.92 and 10.9?µm), the pH of emulsions (4–8.6) and storage time on physical properties, droplet size, and stability of emulsions were investigated. The results indicate that increment of whey protein aggregate size caused an increase in the firmness, droplet size, and viscosity of emulsions, and also a decrease in the emulsion creaming. The emulsion viscosity, firmness, and droplet size were reduced by increasing the emulsion pH; however, the creaming process was accelerated. Viscosity, creaming, and droplet size of emulsions were increased slightly during 21 days storage at 40°C.  相似文献   

8.
The structure of micelles formed by a four component water-in-oil nonionic microemulsion surfactant polyoxyethene (20) sorbitan monoleate (Tween 80), sorbitan monolaurate (Span 20) at ethyl oleate and deuterated water interface have been probed by small-angle neutron scattering (SANS). The total surfactant concentration in each of the samples studied (Tween 80: Span 20) is fixed at 3:2. The deuterated water content is variable at 5–60% w/w. The experimental SANS data from all the seven samples are fit well by spherical micelles interacting with hard sphere potential. Increased deuterated water leads to spherical to lamellar and rod-like micelle geometry featured in the SANS scattering data. The observed change in micelle geometry supports the characterization of phase transition between the self-assembled micelles of the nonionic microemulsion.   相似文献   

9.
Water‐in‐oil (w/o) emulsions were prepared with phosphatidylcholine‐depleted lecithin or polyglycerol polyricinoleate (PGPR) as emulsifying agents. The effect of different laboratory emulsification devices and the effect of sodium chloride on particle size distribution, coalescence stability, and water droplet sedimentation were investigated. The properties of lecithin‐stabilized w/o emulsions were found to depend more strongly on the emulsifying method than those prepared with PGPR. The rotor‐stator system was not suitable for preparing stable w/o emulsions with lecithin. Whereas the addition of salt was essential to achieve coalescence‐stable emulsions prepared with PGPR, the presence of NaCl favored the coalescence of water droplets and phase separation in emulsions containing lecithin.  相似文献   

10.
Emulsion inversion has been studied in a system based on oil (toluene/heptane), 5β‐cholanic acid, and an alkaline brine solution by varying the concentration of sodium hydroxide. At an intermediate pH w/o emulsions were formed, and in the high pH region o/w emulsions were formed. Emulsion inversion occurred in the pH range 8.5–10. The w/o emulsions were consistently more stable compared to the o/w emulsions. Increasing the amount of acid enhanced the stability of the emulsions. Maximum stability was observed close to pH 8, where the ratio between the undissociated and dissociated acid was approximately 1.5. From light microscopy, it can be seen that the emulsions are stabilized by a liquid gel phase. At equilibrium the system consists of an oil phase, a liquid gel phase, and an aqueous phase. Increasing the oil fraction eventually gave only w/o emulsions in the pH range between 7 and 14. For these emulsions, no obvious difference in stability was observed at pH 8, while the stability of the emulsions in the high pH region was significantly enhanced. An increase of the ratio between toluene and heptane gave no obvious difference in either stability or type of emulsion while varying the pH. Use of a less lipophilic acid, such as 4‐octylbenzoic acid, gave very unstable w/o emulsions in the intermediate pH region, while stable o/w emulsions were found in the high pH region.  相似文献   

11.
Degradation of kinetically-stable o/w emulsions   总被引:3,自引:0,他引:3  
This article summarizes the studies on the degradation of the thermodynamically unstable o/w (nano)emulsion--a dispersion of one liquid in another, where each liquid is immiscible, or poorly miscible in the other. Emulsions are unstable exhibiting flocculation, coalescence, creaming and degradation. The physical degradation of emulsions is due to the spontaneous trend toward a minimal interfacial area between the dispersed phase and the dispersion medium. Minimizing the interfacial area is mainly achieved by two mechanisms: first coagulation possibly followed by coalescence and second by Ostwald ripening. Coalescence is often considered as the most important destabilization mechanism leading to coursing of dispersions and can be prevented by a careful choice of stabilizers. The molecular diffusion of solubilizate (Ostwald ripening), however, will continuously occur as soon as curved interfaces are present. Mass transfers in emulsion may be driven not only by differences in droplet curvatures, but also by differences in their compositions. This is observed when two or more chemically different oils are emulsified separately and the resulting emulsions are mixed. Compositional ripening involves the exchange of oil molecules between emulsion droplets with different compositions. The stability of the electrostatically- and sterically-stabilized dispersions can be controlled by the charge of the electrical double layer and the thickness of the droplet surface layer formed by non-ionic emulsifier. In spite of the similarities between electrostatically- and sterically-stabilized emulsions, there are large differences in the partitioning of molecules of ionic and non-ionic emulsifiers between the oil and water phases and the thickness of the interfacial layers at the droplet surface. The thin interfacial layer (the electrical double layer) at the surface of electrostatically stabilized droplets does not create any steric barrier for mass transfer. This may not be true for the thick interfacial layer formed by non-ionic emulsifier. The interactive sterically-stabilized oil droplets, however, can favor the transfer of materials within the intermediate agglomerates. The stability of electrosterically-stabilized emulsion is controlled by the ratio of the thickness of the non-ionic emulsifier adsorption layer (delta) to the thickness of the electrical double layer (kappa(-1)) around the oil droplets (delta/(kappa(-1))) = (deltakappa). The monomer droplet degradation can be somewhat depressed by transformation of coarse emulsions to nano-emulsion (miniemulsion) by intensive homogenization and by the addition of a surface active agent (coemulsifier) or/and a water-insoluble compound (hydrophobe). The addition of hydrophobe (hexadecane) to the dispersed phase significantly retards the rate of ripening. A long chain alcohol (coemulsifier) resulted in a marked improvement in stability, as well, which was attributed to a specific interaction between alcohol and emulsifier and to the alcohols tendency to concentrate at the o/w interface to form stronger interfacial film. The rate of ripening, according to the Lifshitz-Slyozov-Wagner (LSW) model, is directly proportional to the solubility of the dispersed phase in the dispersion medium. The increased polarity of the dispersed phase (oil) decreases the stability of the emulsion. The molar volume of solubilizate is a further parameter, which influences the stability of emulsion or the transfer of materials through the aqueous phase. The interparticle interaction is expected to favor the transfer of solubilizate located at the interfacial layer. The kinetics of solubilization of non-polar oils by ionic micelles is strongly related to the aqueous solubility of the oil phase (the diffusion approach), whilst their solubilization into non-ionic micelles can be contributed by interparticle collisions.  相似文献   

12.
W/O/W乳液的渗透溶胀与夹带溶胀   总被引:6,自引:0,他引:6  
研究了W/O/W乳液的溶胀,实验结果表明,渗透溶胀随内外相溶液间的渗透压差、表面活性剂及载体浓度的增大而增加,但随膜粘度的增加而降低,渗透压差较高时,水渗透的影响大于夹带的影响;膜相中含氧化合物对溶胀的影响大于含氮化合物,采用Span 80作乳化剂时,比采用E 644渗透溶胀约高6倍,夹带溶胀也较高;重复聚结再分散使夹带溶胀急剧增加,因而多级混合澄清槽对液膜操作似不适用。  相似文献   

13.
Oil-in-water emulsions were prepared by emulsifying mineral oil in gold nanoparticle (GNP) solution using amphiphilic polymers as an emulsifier. Poly(2-hydroxyethyl acrylate) (PHEA) and poly(2-hydroxyethyl acrylate-co-propyl methacryate) (P(HEA/PMA)) having different PMA contents (2.98%, 3.29%, 6.1%, and 8.59% (mole/mole)) were prepared by a free radical polymerization, confirmed by 1H NMR spectroscopy. According to the optical density change of the polymer solution (2% (w/v)) at 20°C–80°C, only P(HEA/PMA) having a PMA content of 3.29 mole % showed its lower solution critical temperature around 31°C. The air/water interfacial activity of the amphiphilic polymers was higher as the PMA content was higher. GNP was prepared by reducing gold ions in water. The mean hydrodynamic diameter was 22.2?nm and it appeared sphere-like on TEM photo. The emulsion prepared using PHEA maintained its stability above 80% for 190 hours, whereas it was destabilized rapidly upon 60 minutes of near-infrared (NIR) irradiation and its stability decreased to below 20% in 20 hours. As the PMA content was higher, the stability of the emulsions prepared using P(HEA/PMA) became lower and NIR irradiation accelerated the destabilization more effectively.  相似文献   

14.
The required hydrophilic-lipophilic balance (HLB) of an oily substance indicates the HLB of the surfactants required to prepare a stable emulsion using the oil. This study utilizes empirical method to calculate required HLB (RHLB) of Capryol 90 using surfactant blends (Span 20, Tween 20, vitamin E TPGS, Pluronic F68, Span 60, and Tween 80). The methods used were assessment of degree of creaming after centrifugation and after shelf storage for 28 days at room temperature, turbidimetric method, accelerated stability study, and droplet size analysis. The droplet size was found to be in the range of 15 to 2 µm and v/v% separation after centrifugation was found to be 0–82%. The RHLB for Capryol 90 was found to be 15. The effect of various surfactant blends was investigated. Results revealed that a blend of tocopherol polyethylene glycol succinate (TPGS) and Pluronic F68 gave the most stable emulsion for Capryol 90.  相似文献   

15.
The stability and phase behavior of acrylamide-based emulsions, prepared with surfactants consisting of lipophilic Span80 and hydrophilic OP10, before or after polymerization were investigated. The research results indicated that the phase separation behavior of the W/O-type emulsions is related to the toluene/water ratio. When the water volume fraction was larger, the phase separation mechanism was mainly a penetration of aqueous molecules from the dispersed-phase droplets. When the water volume fraction was smaller, the phase separation mechanism was mainly a sedimentation of the separated aqueous droplets. At a fixed toluene/water ratio, the emulsion stability and the emulsion type are related not only to the ratio of the two surfactants but also to the acrylamide concentration, and the effect of increasing acrylamide concentration on the character of the emulsions is similar to that of increasing OP10 mass fraction (increasing HLB value), which determines the corresponding relationship between acrylamide concentration and HLB value in the most stable emulsion system. To obtain the most stable emulsion at a fixed acrylamide concentration, the emulsion with higher acrylamide concentration needs a lower HLB value for the emulsion systems.  相似文献   

16.
Factors controlling the formation and stabilization of water-in-crude oil (w/o) emulsions in oil fields are of great concern to the petroleum industry for the economic development of underground oil reservoirs. Controlling and minimizing the formation of w/o emulsions and demulsification of water from emulsions are also important for environmental development. Because of its importance, the mechanisms, formation, and stability of w/o emulsions have received considerable attention. This article deals with some of the factors responsible for the formation and stabilization of w/o emulsions formed in Burgan oil field in Kuwait. Some of the factors investigated in this study are the naturally occurred surface active components of crude oils such as asphaltenes and resins. Stability of emulsion samples with resins to asphaltenes ratio (R/A) contents of 3, 5, 9, 12, and 20 has been studied. It was found that Emulsion tightness is correlated with resins to asphaltene content of the sample. As the R/content increases the emulsion becomes unstable. The effect of additives such as toluene and dodecyle benzene sulfonic acid (DBSA) on the stability of various emulsion samples collected from oil field are also reported. A 2 wt% of DBSA was found to resolve all the water from emulsion samples collected from Burgan oilfield.  相似文献   

17.
Double inversion of emulsions induced by salt concentration   总被引:1,自引:0,他引:1  
The effects of salt on emulsions containing sorbitan oleate (Span 80) and Laponite particles were investigated. Surprisingly, a novel double phase inversion was induced by simply changing the salt concentration. At fixed concentration of Laponite particles in the aqueous phase and surfactant in paraffin oil, emulsions are oil in water (o/w) when the concentration of NaCl is lower than 5 mM. Emulsions of water in oil (w/o) are obtained when the NaCl concentration is between 5 and 20 mM. Then the emulsions invert to o/w when the salt concentration is higher than 50 mM. In this process, different emulsifiers dominate the composition of the interfacial layer, and the emulsion type is correspondingly controlled. When the salt concentration is low in the aqueous dispersion of Laponite, the particles are discrete and can move to the interface freely. Therefore, the emulsions are stabilized by particles and surfactant, and the type is o/w as particles are in domination. At intermediate salt concentrations, the aqueous dispersions of Laponite are gel-like, the viscosity is high, and the transition of the particles from the aqueous phase to the interface is inhibited. The emulsions are stabilized mainly by lipophilic surfactant, and w/o emulsions are obtained. For high salt concentration, flocculation occurs and the viscosity of the dispersion is reduced; thus, the adsorption of particles is promoted and the type of emulsions inverts to o/w. Laser-induced fluorescent confocal micrographs and cryo transmission electron microscopy clearly confirm the adsorption of Laponite particles on the surface of o/w emulsion droplets, whereas the accumulation of particles at the w/o emulsion droplet surfaces was not observed. This mechanism is also supported by the results of rheology and interfacial tension measurements.  相似文献   

18.
Water-in-oil-in-water (W/O/W) double emulsion can be prepared by incomplete phase inversion method using both medium chain triglycerides (MCT) and isopropyl myristate (IPM) as oil phase, Span 85-Tween 80 (HLB values of 2.5-3.0) as mixed emulsifiers. The preparation method was simple, and the final double emulsions were proved of good microstructure and particle size distribution. Owning to the addition of Tween 80 to Span 85, interfacial tension, interfacial viscosity and modulus decreased, which contributed to the phase inversion. Furthermore, formation of reverse micelles under high-speed dispersion may be a hypothesis to explain the incomplete phase inversion phenomenon.  相似文献   

19.
The objectives of this study were to examine the influence interfacial composition on environmental stresses stability of oil in water emulsions. An electrostatic layer-by-layer deposition method was used to create the multilayered interfacial membranes with different compositions: (i) primary emulsion (Soy protein Isolate); (ii) secondary emulsion (Soy protein Isolate – OSA-starch); (iii) tertiary emulsion (Soy protein isolate – OSA-starch – chitosan). Fourier transform-infrared (FTIR) and scanning electron microscopy (SEM) results confirmed the adsorption of charged polyelectrolyte onto oppositely charge polyelectrolyte-coated oil droplets. The stability of primary, secondary, and tertiary emulsions to thermal treatment (30 min at 30–90°C), pH (3–7) and NaCl (0–500 mM) were determined using ζ-potential, particle diameter, and microstructure analysis. Primary emulsions were unstable at pH 4–7, salt concentrations, and thermal treatments. Secondary emulsions were stable to creaming and droplet aggregation at pH 3–5, at ≤50 mM NaCl, and unstable at thermal treatments, whereas tertiary emulsions were stable at all salt concentrations, thermal treatments, and at pH 3–6. These results demonstrate that these polymers can be used to engineer oil in water emulsion systems and improve the emulsion stability to environmental stresses.  相似文献   

20.
Aqueous dispersions of lightly cross-linked poly(4-vinylpyridine)/silica nanocomposite microgel particles are used as a sole emulsifier of methyl myristate and water (1:1 by volume) at various pH values and salt concentrations at 20 degrees C. These particles become swollen at low pH with the hydrodynamic diameter increasing from 250 nm at pH 8.8 to 630 nm at pH 2.7. For batch emulsions prepared at pH 3.4, oil-in-water (o/w) emulsions are formed that are stable to coalescence but exhibit creaming. Below pH 3.3, however, these emulsions are very unstable to coalescence and rapid phase separation occurs just after homogenization (pH-dependent). The pH for 50% ionization of the pyridine groups in the particles in the bulk (pK(a)) was determined to be 3.4 by acid titration measurements of the aqueous dispersion. Thus, the charged swollen particles no longer adsorb at the oil-water interface. For continuous emulsions (prepared at high pH with the pH then decreased abruptly or progressively), demulsification takes place rapidly below pH 3.3, implying that particles adsorbed at the oil-water interface can become charged (protonated) and detached from the interface in situ (pH-responsive). Furthermore, at a fixed pH of 4.0, addition of sodium chloride to the aqueous dispersion increases the degree of ionization of the particles and batch emulsions are significantly unstable to coalescence at a salt concentration of 0.24 mol kg(-1). The degree of ionization of such microgel particles is a critical factor in controlling the coalescence stability of o/w emulsions stabilized by them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号