首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a new scheme was proposed to calculate the intramolecular hydrogen-bonding energies in peptides and was applied to calculate the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of the glycine and alanine peptides. The density-functional theory B3LYP6-31G(d) and B3LYP6-311G(d,p) methods and the second-order Moller-Plesset perturbation theory MP26-31G(d) method were used to calculate the optimal geometries and frequencies of glycine and alanine peptides and related structures. MP26-311++G(d,p), MP26-311++G(3df,2p), and MP2/aug-cc-pVTZ methods were then used to evaluate the single-point energies. It was found that the B3LYP6-31G(d), MP26-31G(d), and B3LYP6-311G(d,p) methods yield almost similar structural parameters for the conformers of the glycine and alanine dipeptides. MP2/aug-cc-pVTZ predicts that the intramolecular seven-membered ring N-H...O=C hydrogen-bonding strength has a value of 5.54 kcal/mol in glycine dipeptide and 5.73 and 5.19 kcal/mol in alanine dipeptides, while the steric repulsive interactions of the seven-membered ring conformers are 4.13 kcal/mol in glycine dipeptide and 6.62 and 3.71 kcal/mol in alanine dipeptides. It was also found that MP26-311++G(3df,2p) gives as accurate intramolecular N-H...O=C hydrogen-bonding energies and steric repulsive interactions as the much more costly MP2/aug-cc-pVTZ does.  相似文献   

2.
Polyhedral water clusters (PWCs) are cage-like (H2O)n clusters where every O participates in exactly three H bonds. For a database of 83 PWCs, 8 < or = n < or = 20, geometry was optimized and zero point energy (ZPE) was calculated at the B3LYP/6-311++G** level. ZPE correlates negatively with electronic energy (E0): each increase of 1 kcal/mol in E0 corresponds to a decrease of about 0.11 kcal/mol in ZPE. For each n, a set of four connectivity parameters accounts for 98% or more of the variance in ZPE. Linear regression of ZPE against n and this set gives an RMS error of 0.13 kcal/mol. The contributions to ZPE from stretch modes only (ZPE(S)) and from torsional modes only (ZPE(T)) also correlate strongly with E0 and with each other.  相似文献   

3.
The structural stability and internal rotations in cyclopropanecarboxylic acid and cyclopropanecarboxamide were investigated by the DFT-B3LYP and the ab initio MP2 calculations using 6-311G** and 6-311+G** basis sets. The computations were extended to the MP4//MP2/6-311G** and CCSD(T)//MP2/6-311G** single-point calculations. From the calculations the molecules were predicted to exist predominantly in the cis (C=O group eclipses the cyclopropane ring) with a cis-trans barrier of about 4-6kcal/mol. The OCOH torsional barrier in the acid was estimated to be about 12-13kcal/mol while the corresponding OCNH torsional barrier in the amide was calculated to be about 20kcal/mol. The equilibrium constant k for the cis<-->trans interconversion in cyclopropanecarboxylic acid was calculated to be 0.1729 at 298.15K that corresponds to an equilibrium mixture of about 85% cis and 15% trans. The vibrational frequencies were computed at the DFT-B3LYP level. Normal coordinate calculations were carried out and potential energy distributions were calculated for the low energy cis conformer of the molecules. Complete vibrational assignments were made on the basis of normal coordinate calculations and comparison with experimental data of the molecules.  相似文献   

4.
The molecular structure of the trans isomer of metal-free phthalocyanine (H2Pc) is determined using the gas electron diffraction (GED) method and high-level quantum chemical calculations. B3LYP calculations employing the basis sets 6-31G**, 6-311++G**, and cc-pVTZ give two tautomeric isomers for the inner H atoms, a trans isomer having D2h symmetry and a cis isomer having C2v symmetry. The trans isomer is calculated to be 41.6 (B3LYP/6-311++G**, zero-point corrected) and 37.3 kJ/mol (B3LYP/cc-pVTZ, not zero-point corrected) more stable than the cis isomer. However, Hartree-Fock (HF) calculations using different basis sets predict that cis is preferred and that trans does not exist as a stable form of the molecule. The equilibrium composition in the gas phase at 471 degrees C (the temperature of the GED experiment) calculated at the B3LYP/6-311++G** level is 99.8% trans and 0.2% cis. This is in very good agreement with the GED data, which indicate that the mole fraction of the cis isomer is close to zero. The transition states for two mechanisms of the NH tautomerization have been characterized. A concerted mechanism where the two H atoms move simultaneously yields a transition state of D2h symmetry and an energy barrier of 95.8 kJ/mol. A two-step mechanism where a trans isomer is converted to a cis isomer, which is converted into another trans isomer, proceeds via two transition states of C(s) symmetry and an energy barrier of 64.2 kJ/mol according to the B3LYP/6-311++G** calculation. The molecular geometry determined from GED is in very good agreement with the geometry obtained from the quantum chemical calculations. Vibrational frequencies, IR, and Raman intensities have been calculated using B3LYP/6-311++G**. These calculations indicate that the molecule is rather flexible with six vibrational frequencies in the range of 20-84 cm(-1) for the trans isomer. The cis isomer might be detected by infrared matrix spectroscopy since the N-H stretching frequencies are very different for the two isomers.  相似文献   

5.
Pure fluorocarbonyl trifluoromethanesulfonate, FC(O)OSO(2)CF(3), is prepared in about 70% yield by the ambient-temperature reaction between FC(O)SCl and AgCF(3)SO(3). The geometric structure and conformational properties of the gaseous molecule have been studied by gas electron diffraction (GED), vibrational spectroscopy [IR(gas), IR(matrix), and Raman(liquid)] and quantum chemical calculations (HF, MP2, and B3LYP with 6-311G basis sets); in addition, the solid-state structure has been determined by X-ray crystallography. FC(O)OSO(2)CF(3) exists in the gas phase as a mixture of trans [FC(O) group trans with respect to the CF(3) group] and gauche conformers with the trans form prevailing [67(8)% from GED and 59(5)% from IR(matrix) measurements]. In both conformers the C=O bond of the FC(O) group is oriented synperiplanar with respect to the S-O single bond. The experimental free energy difference between the two forms, DeltaG degrees = 0.49(13) kcal mol(-1) (GED) and 0.22(12) kcal mol(-1) (IR), is slightly smaller than the calculated value (0.74-0.94 kcal mol(-1)). The crystalline solid at 150 K [monoclinic, P2(1)/c, a = 10.983(1) A, b = 6.4613(6) A, c = 8.8508(8) A, beta = 104.786(2) degrees ] consists exclusively of the trans conformer.  相似文献   

6.
The IR (gas) and Raman (liquid) spectra of FC(O)NSCl(2) demonstrate the presence of a conformational mixture in both phases. According to a gas electron diffraction study, the main conformer (94(8)%) possesses a syn-syn structure (C(O)F group synperiplanar with respect to the SCl(2) bisector and the C=O bond synperiplanar to the N=S bond). Quantum chemical calculations (HF, B3LYP and MP2 with 6-31G basis set, and MP2/6-311(2df)) predict a syn-anti structure for the second conformer. Analysis of the IR (gas) spectrum results in a contribution of 5(1)% of the minor form, corresponding to a Gibbs free energy difference DeltaG degrees = G degrees (syn-anti) - G degrees (syn-syn) = 1.75(15) kcal/mol. This value is reproduced very well by quantum chemical calculations, which include electron correlation effects (DeltaG degrees = 1.28-1.56 kcal/mol). The HF approximation overestimates this energy difference (DeltaG degrees = 3.24 kcal/mol).  相似文献   

7.
Trichloromethanesulfenyl acetate, CCl 3SOC(O)CH 3, belongs to the family of sulfenic esters. This molecule has been characterized by vibrational spectroscopy. The conformational and geometrical properties of this species have been determined by IR and Raman spectroscopy, X-ray diffraction, and quantum chemical calculations. Geometry optimizations of the most stable forms were performed with ab initio (HF, MP2) and density functional theory (B3LYP) methods. According to our data, this compound results in a gauche-syn conformer with C 1 symmetry (gauche orientation around the S-O bond and syn orientation of the CO double bond with respect to the S-O single bond) for the most stable geometry, and trans-syn conformer with C s symmetry (trans orientation around the S-O bond and syn orientation of the CO double bond with respect to the S-O single bond) for the second stable conformer (1.1 and 0.53 kcal/mol higher in energy than the most stable C 1 form according to the matrix FTIR spectroscopy and MP2/6-31G* level of the theory, respectively). The crystalline solid (monoclinic, P2 1/ n, a = 8.0152(17) A, b = 5.7922(13) A, c = 17.429(4) A, alpha = gamma = 90 degrees , beta = 100.341(3) degrees ) consists exclusively of the main form. The geometrical parameters (X-ray diffraction) are d C-Cl = 1.767(19) A, d C-S = 1.797(2) A, d S-O = 1.663(14) A, d CO = 1.189(2) A, d O-C = 1.389(3) A, d C-C = 1.483(3) A, angles Cl-C-Cl = 110.3(11) degrees , Cl-C-S = 111.8(12) degrees , C-S-O = 97.4(8) degrees , S-O-C = 116.7(11) degrees , O-CO = 122.8(19) degrees , OC-C = 127.1(2) degrees , and the main torsion angles are delta(CSOC) = 105.9(15) degrees and delta(SOC(O)) = 7.6(3) degrees . The geometrical data calculated with B3LYP/6-31G++(3df,3pd), B3LYP/6-311G++(3df,3pd), B3LYP/aug-cc-pVTZ, and MP2/6-31G* are in good agreement with diffraction data.  相似文献   

8.
The conformational free energies for some 2-substituted butanes where X = F, Cl, CN, and CCH were calculated using G3-B3, CBS-QB3, and CCSD(T)/6-311++G(2d,p) as well as other theoretical levels. The above methods gave consistent results with free energies relative to the trans conformers as follows: X = CCH, g+ = 0.77 +/- 0.05 kcal/mol. g- = 0.88 +/- 0.05 kcal/mol; X = CN, g+ = 0.85 +/- 0.05 kcal/mol, g- = 0.75 +/- 0.05 kcal/mol; X = Cl, g+ = 0.70 +/- 0.05 kcal/ml, g- = 0.80 +/- 0.05 kcal/mol; and X = F, g+ = 0.53 +/- 0.05 kcal/mol, g- = 0.83 +/- 0.05 kcal/mol. The conformational free energies also were estimated using the observed liquid phase IR spectra and intensities calculated using B3LYP/6-311++G** and MP2/6-311++G**. The rotational free energy profiles for all of the compounds were estimated at the G3-B3 level.  相似文献   

9.
Two novel species, trichloromethanesulfenyl acetate, CCl(3)SOC(O)CH(3), and trichloromethanesulfenyl trifluoroacetate, CCl(3)SOC(O)CF(3), have been generated in situ by the heterogeneous reactions between trichloromethanesulfenyl chloride, CCl(3)SCl, and corresponding silver salts, silver acetate (AgOC(O)CH(3)) and silver trifluoroacetate (AgOC(O)CF(3)), respectively. Photoelectron spectroscopy and quantum chemical calculations are performed to investigate these two molecules, together with their precursor, CCl(3)SCl. Both of these two compounds may exist in the gas phase as a mixture of gauche and trans conformations. As for the dihedral angles delta(RSOR') of the gauche conformers, 107.0 degrees and 108.5 degrees are derived by theoretical calculations (at the B3LYP/6-311+G(3df) level) for CCl(3)SOC(O)CH(3) and CCl(3)SOC(O)CF(3), respectively. The first vertical ionization energies of CCl(3)SOC(O)CH(3) and CCl(3)SOC(O)CF(3), which have been determined by photoelectron spectroscopy, are 9.67 and 10.34 eV, respectively. According to the experimental results and theoretical analysis, the first ionization energy of these two molecules both come from the ionization of the lone pair electron of S atom.  相似文献   

10.
A series of X,Y-substituted benzhydryl phenyl carbonates 1 and X,Y-substituted benzhydryl methyl carbonates 2 were subjected to solvolysis in different methanol/water, ethanol/water, and acetone/water mixtures at 25 degrees C. The LFER equation, log k = sf(Ef + Nf), was used to derive the nucleofuge-specific parameters (Nf and sf) for phenyl carbonate (1LG) and methyl carbonate (2LG) leaving groups in a given solvent in SN1 type reaction. Kinetic measurements showed that phenyl carbonates solvolyze one order of magnitude faster than methyl carbonates. Optimized geometries of 1LG and 2LG at B3LYP/6-311G(d,p), B3LYP/6-311++G(d,p), and MP2(full)/6-311++G(d,p) levels revealed that negative charge delocalization in carbonate anions to all three oxygen atoms occurs due to negative hyperconjugation. Phenyl carbonate (1LG) is a better leaving group (Nf = -0.84 +/- 0.07 in 80% v/v aq EtOH) than methyl carbonate 2LG (Nf = -1.84 +/- 0.07 in 80% v/v aq EtOH) because of more pronounced negative hyperconjugation, which is characterized with a more elongated RO-C bond and more increased RO-C-CO angle in 1LG than in 2LG. Calculated affinities of benzhydryl cation toward methyl and phenyl carbonate anions (DeltaDeltaEaff = 11.7 kcal/mol at the B3LYP/6-311++G(d,p) level and DeltaDeltaEaff = 2.7 kcal/mol at the PCM-B3LYP/6-311++G(d,p) level in methanol, respectively) showed that 1LG is more stabilized than 2LG, which is in accordance with greater solvolytic reactivity of 1 than 2.  相似文献   

11.
The cheletropic decompositions of 1-nitrosoaziridine (1), 1-nitroso-Delta(3)-pyrroline (2), 7-nitroso-7-azabicyclo[2.2. 1]hepta-2,5-diene (3), and 6-nitroso-6-azabicyclo[2.1.1]hexa-4-ene (4) have been studied theoretically using high level ab initio computations. Activation parameters of the decomposition of nitrosoaziridine 1 were obtained experimentally in heptane (DeltaH()(298) = 18.6 kcal mol(-)(1), DeltaS()(298) = -7.6 cal mol(-)(1) K(-)(1)) and methanol (20.3 kcal mol(-)(1), 0.3 cal mol(-)(1) K(-)(1)). Among employed theoretical methods (B3LYP, MP2, CCD, CCSD(T)//CCD), the B3LYP method in conjunction with 6-31+G, 6-311+G, and 6-311++G(3df,2pd) basis sets gives the best agreement with experimental data. It was found that typical N-nitrosoheterocycles 2-4 which have high N-N bond rotation barriers (>16 kcal mol(-)(1)) extrude nitrous oxide via a highly asynchronous transition state with a planar ring nitrogen atom. Nitrosoaziridine 1, with a low rotation barrier (<9 kcal mol(-)(1)) represents a special case. This compound can eliminate N(2)O via a low energy linear synperiplanar transition state (DeltaH()(298) = 20.6 kcal mol(-)(1), DeltaS()(298) = 2.5 cal mol(-)(1) K(-)(1)). Two higher energy transition states are also available. The B3LYP activation barriers of the cheletropic fragmentation of nitrosoheterocycles 2-4 decrease in the series: 2 (58 kcal mol(-)(1)) > 3 (18 kcal mol(-)(1)) > 4 (12) kcal mol(-)(1). The relative strain energies increase in the same order: 2 (0 kcal mol(-)(1)) < 3 (39 kcal mol(-)(1)) < 4 (52 kcal mol(-)(1)). Comparison of the relative energies of 2-4 and their transition states on a common scale where the energy of nitrosopyrroline 2 is assumed as reference indicates that the thermal stability of the cyclic nitrosoamines toward cheletropic decomposition is almost entirely determined by the ring strain.  相似文献   

12.
Pure chlorocarbonyl trifluoromethanesulfonate, ClC(O)OSO(2)CF(3), has been prepared in about 58% yield by the ambient-temperature reaction between ClC(O)SCl and AgCF(3)SO(3). The conformational properties of the gaseous molecule have been studied by vibrational spectroscopy [IR(gas), IR(matrix), and Raman(liquid)] and quantum chemical calculations (HF and B3LYP with 6-31+G* basis sets); in addition, the solid-state structure has been determined by X-ray crystallography. ClC(O)OSO(2)CF(3) exists in the gas phase as a mixture of trans [ClC(O) group trans with respect to the CF(3) group] and gauche conformers, with the trans form being the more abundant [66(8)% from IR(matrix) measurements]. In both conformers, the C=O bond of the ClC(O) group is oriented synperiplanar with respect to the S-O single bond. The experimental free energy difference between the two forms, DeltaG degrees = 0.8(2) kcal mol(-1) (IR), is slightly smaller than the calculated value (1.0-1.5 kcal mol(-1)). The crystalline solid at 150 K [monoclinic, P2(1)/n, a = 7.3951(9) angstroms, b = 24.897(3) angstroms, c = 7.4812(9) angstroms, beta = 99.448(2) degrees, Z = 8] consists surprisingly of both trans and gauche forms. Whereas the more stable conformer for the more or less discrete molecules and the polarization effects would tend to favor the trans form, the packing effects would stabilize the gauche rotamer in the solid state.  相似文献   

13.
Ab initio molecular orbital (MO) calculations have been carried out for base-hydrogen fluoride (HF) complexes (base = O3 and SO2) in order to elucidate the structures and energetics of the complexes. The ab initio calculations were performed up to the QCISD(T)/6-311++G(d,p) level of theory. In both complexes, hydrogen-bonded structures where the hydrogen of HF orients toward one of the oxygen atoms of bases were obtained as stable forms. The calculations showed that cis and trans isomers exist in both complexes. All calculations for the SO2-HF complex indicated that the cis form is more stable in energy than the trans form. On the other hand, in O3-HF complexes, the stable structures are changed by the ab initio levels of theory used, and the energies of the cis and trans forms are close to each other. From the most sophisticated calculations (QCISD(T)/6-311++G(d,p)//QCISD/6-311+G(d) level), it was predicted that the complex formation energies for cis SO2-HF, trans SO2-HF, cis O3-HF, and trans O3-HF are 6.1, 5.7, 3.4, and 3.6 kcal/mol, respectively, indicating that the binding energy of HF to SO2 is larger than that of O3. The harmonic vibrational frequencies calculated for cis O3-HF and cis SO2-HF complexes were in good agreement with the experimental values measured by Andrews et al. Also, the calculated rotation constants for cis SO2-HF agreed with the experiment.  相似文献   

14.
Bis(trifluoroaceto) disulfide CF(3)C(O)OSSOC(O)CF(3) was prepared and studied by Raman, photoelectron spectroscopy (PES), and theoretical calculations. This molecule exhibits gauche conformation with both C=O groups cis to the S-S bond; the structure of the OSSO moiety is characterized by dihedral angle delta(OSSO) = -95.1 degrees due to the sulfur-sulfur lone pair interactions. The contracted S-S bond (1.979 Angstroms) and relatively high rotational barrier (19.29 kcal mol(-1) at the B3LYP/6-31G level) of the delta(OSSO) indicate the partial resonance-induced double bond character in this molecule. After ionization, the ground cationic-radical form of CF(3)C(O)OSSOC(O)CF(3)(*+) adopts a trans planar main-atom structure (delta(OSSO) = 180 degrees and delta(OCOS) = 0 degrees ) with C(2)(h) symmetry. The S-S bond elongates to 2.054 Angstroms, while the S-O bond shortens from 1.755 Angstroms in neutral form to 1.684 Angstroms in its corresponding cationic-radical form. The adiabatic ionization energy of 9.91 eV was obtained accordingly. The first two HOMOs correspond to the electrons mainly localized on the sulfur 3p lone pair MOs: 3ppi {36a (n(A)(S))](-1) and 3ppi [35b (n(B)(S), n(B)(O(C)(=)(O)))](-1), with an experimental energy separation of 0.16 eV. The first vertical ionization energy is determined to be 10.81 eV.  相似文献   

15.
The conformational behavior and the structural stability of formyl fluoroketene, formyl chloroketene and formyl methylketene were investigated by utilizing quantum mechanical DFT calculations at B3LYP/6-31I + + G** and ab initio calculations at MP2/6-311 + + G** levels. The three molecules were predicted to have a planar s-cis<-->s-trans conformational equilibrium. From the calculations, the direction of the conformational equilibrium was found to be dependent on the nature of the substituting group. In formyl haloketenes, the cis conformation, where the C=O group eclipses the ketenic group, was expected to be of lower energy than the trans conformer. In the case of formyl methylketene the conformational stability was reversed and the trans form (the aldehydic hydrogen eclipsing the ketenic group) was calculated to be about 2 kcal mol(-1) lower in energy than the cis form. The calculated cis-trans energy barrier was found to be in the order: fluoride (15.3 kcal mol(-1)) > chloride (13.1 kcal mol(-1)) > methyl (11.7 kcal mol(-1). Full optimization was performed at the ground and the transition states of the molecules. The vibrational frequencies for the stable conformers of the three ketenic systems were computed at the DFT-B3LYP level, and the zero-point corrections were included into the calculated rotational barriers. Complete vibrational assignments were made on the basis of both normal coordinate calculations and comparison with experimental results of similar molecules.  相似文献   

16.
The ring-closing reaction of hexatriene radical cation 1(*)(+) to 1,3-cyclohexadiene radical cation 2(*)(+) was studied computationally at the B3LYP/6-31G* and QCISD(T)/6-311G*//QCISD/6-31G* levels of theory. Both, concerted and stepwise mechanisms were initially considered for this reaction. Upon evaluation at the B3LYP level of theory, three of the possible pathways-a concerted C(2)-symmetric via transition structure 3(*)(+) and stepwise C(1)-symmetric pathways involving three-membered ring intermediate 5(*)(+) and four-membered ring intermediate 6(*)(+)-were rejected due to high-energy stationary points along the reaction pathway. The two remaining pathways were found to be of competing energy. The first proceeds through the asymmetric, concerted transition structure 4(*)(+) with an activation barrier E(a) = 16.2 kcal/mol and an overall exothermicity of -23.8 kcal/mol. The second pathway, beginning from the cis,cis,trans rotamer of 1(*)(+), proceeds by a stepwise pathway to the cyclohexadiene product with an overall exothermicity of -18.6 kcal/mol. The activation energy for the rate-determining step in this process, the formation of the intermediate bicyclo[3.1.0]hex-2-ene via transition structure 9(*)(+), was found to be 20.4 kcal/mol. More rigorous calculations of a smaller subsection of the potential energy hypersurface at the QCISD(T)//QCISD level confirmed these findings and emphasized the importance of conformational control of the reactant.  相似文献   

17.
The relative and thermodynamic stabilities of cis and trans isomers of 1,2-dihalodiazenes (XN=NX; X = F, Cl, or Br) were examined using high level ab initio and density functional theory (DFT) calculations. For 1,2-dihalodiazenes, it was found that the cis isomers were more stable than the corresponding trans isomers, despite the existence of several cis destabilizing mechanisms, such as steric exchange between halogen lone pairs and dipole-dipole electrostatic repulsions (Delta(trans-cis) = 3.15, 7.04, and 8.19 kcal mol(-1), respectively, at BP86/6-311++G(3df,3pd)//B3LYP /6-311++G(3df,3pd) level). Their origin of the cis-preferred difference in energy was investigated with natural bond orbital (NBO) analysis to show that the "cis effect" came mainly from antiperiplanar interactions (AP effect) between the nitrogen lone pair and the neighboring antibonding orbital of the N-X bond (n(N) --> sigma(N'X'*)). The delocalization of halogen lone-pair into the antibonding orbital of the N=N bonds (the LP effects) was also found to enhance the cis preference by 1.20 to 6.58 kcal mol(-1), depending on the substituted halogen atom. The total amount of the AP effect increased as the halogen atom became larger, and the increased AP effect promoted the triple-bond-like nature of the N=N bond (shorter N=N bond length and wider NNX angle). The greater AP effect also made the N'-X' bond easier to cleave (longer N-X bond length), and a higher energy level than that of the nitrogen lone pair was found in the N-Br bonding orbital in 1,2-dibromodiazenes, thus indicating the significant instability of this molecule. The degradability of the N-Cl bond in 1,2-dichlorodiazenes and the fair stability of the N-F bond in 1,2-fluorodiazenes were also confirmed theoretically, and were found to be consistent with the previous experimental and theoretical reports. These results clearly indicate the dominance of lone-pair-related hyperconjugations on the basic electronic structure and energetic natures of 1,2-dihalodiazene systems.  相似文献   

18.
We report the conformationally- and vibrationally-selected photoelectron spectroscopy of propanal obtained by resonance-enhanced multiphoton ionization (REMPI) using photoelectron imaging. These photoelectron spectra, employing (2 + 1) ionization via the (n, 3s) Rydberg transitions in the range from 365 to 371 nm, confirm that there are two stable conformer origins in the lowest ionic state, the cis conformer with a co-planar CCCO geometry and a gauche conformer with a approximately 119 degrees CCCO dihedral angle. From ab initio calculations at the B3LYP/6-311++G** level, we find the gauche conformer is slightly more stable, with the energy difference between two conformers determined to be only 65 cm(-1). In our photoelectron spectra, the vertical ionization potential (IP) for the cis conformer of propanal was then determined to be 9.999 (+/-0.003) eV, while that of the gauche conformer of propanal was estimated to be 9.944 eV. A long vibrational progression in the in-plane CCCO deformation vibrational mode, v, for the cis conformer is systematically observed in all photoelectron spectra in which this mode is excited, suggesting that the geometry of the ground ionic state is significantly different from that of the 3s Rydberg state, particularly along the v(15) coordinates.  相似文献   

19.
Hydrogen-bonded gas-phase molecular clusters of dihydrogen trioxide (HOOOH) have been investigated using DFT (B3LYP/6-311++G(3df,3pd)) and MP2/6-311++G(3df,3pd) methods. The binding energies, vibrational frequencies, and dipole moments for the various dimer, trimer, and tetramer structures, in which HOOOH acts as a proton donor as well as an acceptor, are reported. The stronger binding interaction in the HOOOH dimer, as compared to that in the analogous cyclic structure of the HOOH dimer, indicates that dihydrogen trioxide is a stronger acid than hydrogen peroxide. A new decomposition pathway for HOOOH was explored. Decomposition occurs via an eight-membered ring transition state for the intermolecular (slightly asynchronous) transfer of two protons between the HOOOH molecules, which form a cyclic dimer, to produce water and singlet oxygen (Delta (1)O 2). This autocatalytic decomposition appears to explain a relatively fast decomposition (Delta H a(298K) = 19.9 kcal/mol, B3LYP/6-311+G(d,p)) of HOOOH in nonpolar (inert) solvents, which might even compete with the water-assisted decomposition of this simplest of polyoxides (Delta H a(298K) = 18.8 kcal/mol for (H 2O) 2-assisted decomposition) in more polar solvents. The formation of relatively strongly hydrogen-bonded complexes between HOOOH and organic oxygen bases, HOOOH-B (B = acetone and dimethyl ether), strongly retards the decomposition in these bases as solvents, most likely by preventing such a proton transfer.  相似文献   

20.
The natural neurotransmitter (R)-norepinephrine takes the monocationic form in 93% abundance at the physiological tissue pH of 7.4. Ab initio and DFT/B3LYP calculations were performed for 12 protonated conformers of (R)-norepinephrine in the gas phase with geometry optimizations up to the MP2/6-311++G level, and with single-point calculations up to the QCISD(T) level at the HF/6-31G-optimized geometries. Four monohydrates were studied at the MP2/6-31G//HF/6-31G level. In the gas phase, the G1 conformer is the most stable with phenyl.NH(3)(+) gauche and HO(alc).NH(3)(+) gauche arrangements. A strained intramolecular hydrogen bond was found for conformers (G1 and T) with close NH(3)(+) and OH groups. Upon rotation of the NH(3)(+) group as a whole unit about the C(beta)-C(alpha) axis, a 3-fold potential was calculated with free energies for barriers of 3-12 kcal/mol at the HF/6-31G level. Only small deviations were found in MP2/6-311++G single-point calculations. A 2-fold potential was calculated for the phenyl rotation with free energies of 11-13 kcal/mol for the barriers at T = 310 K and p = 1 atm. A molecular mechanics docking study of (R)-norepinephrine in a model binding pocket of the beta-adrenergic receptor shows that the ligand takes a conformation close to the T(3) arrangement. The effect of aqueous solvation was considered by the free energy perturbation method implemented in Monte Carlo simulations. There are 4-5 strongly bound water molecules in hydrogen bonds to the conformers. Although hydration stabilizes mostly the G2 form with gauche phenyl.NH(3)(+) arrangement and a water-exposed NH(3)(+) group, the conformer population becomes T > G1 > G2, in agreement with the PMR spectroscopy measurements by Solmajer et al. (Z. Naturforsch. 1983, 38c, 758). Solvent effects reduce the free energies for barriers to 3-6 and 9-12 kcal/mol for rotations about the C(beta)-C(alpha) and the C(1)(ring)-C(beta) axes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号