首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal venoms are important sources of novel pharmacological tools, useful in biochemical characterization of their receptors. Venom quality control, batch-to-batch homogeneity and high reproducibility of venom fractionation and toxin purification are crucial issues for biochemical and pharmacological studies. To address these issues, a study of the variability of tarantula spider venom samples was undertaken. Venom profiles of samples collected from individuals of different age and sex, and from sibling spiders of the same species, were generated by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and analyzed to assess venom variability and method accuracy. Sex-linked venom variation was studied on eight species. Clear qualitative differences were observed for six out of eight species, as well as quantitative differences. Age-related variation studied in Poecilotheria rufilata showed essentially age-related quantitative differences between adults of both sexes and immature juveniles. The venoms of nine siblings and three wild-collected Pterinochilus murinus were studied for individual variation, showing only very minor quantitative differences. On the same samples, the quality of MALDI-TOFMS venom fingerprinting was demonstrated to be highly reproducible. Our results show that tarantula venom peptide fingerprinting is a highly reliable identification method, that pooled batches of venom from several animals can be used for venom purification, that venom composition does not appear to be qualitatively related to ontogenesis in the spiders studied, and that qualitative sex-linked variation occurs across most species and may be important in activity studies.  相似文献   

2.
Monovalent cations often associate with peptides and proteins under mass spectrometry (MS) conditions, resulting in a discernable, but often misleading, adduct cluster pattern. These adduct cluster peaks reduce the signal intensity of specific peptide species by splitting the ion population into multiple mass peaks, suppressing the ionization of neighboring low-abundance peaks, and interfering with identification of post-translational modifications. Further, monovalent contaminants tend to form a distribution of matrix cluster peaks in matrix-associated laser desorption/ionization time-of-flight (MALDI-TOF) spectra causing interference and suppression in the mass range below 1400 Da. The most common method for reduction or elimination of adduct clusters is solid-phase extraction via a pipette tip or spin column, which often leads to loss of low-abundance peptide components. In this study we describe the use of a commercially available surfactant blend that markedly reduces the adduction of monovalent cations during peptide analysis by MALDI-TOFMS.  相似文献   

3.
High-sensitivity, high-throughput analysis of proteins for proteomics studies is usually performed by polyacrylamide gel electrophoresis in combination with mass spectrometry. However, the quality of the data obtained depends on the in-gel digestion procedure employed. This work describes an improvement in the in-gel digestion efficiency for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis. A dramatic improvement in the coverage of tryptic peptides was observed when n-octyl glucoside was added to the buffer. Whole cell extracted proteins from S. cerevisiae were separated by two-dimensional gel electrophoresis and stained with silver. Protein spots were identified using our improved in-gel digestion method and MALDI-TOFMS. In addition, the mass spectra obtained by using the matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) were compared with those obtained using 2,5-dihydroxybenzoic acid (DHB). The DHB matrix usually gave more peaks, which led to higher sequence coverage and, consequently, to higher confidence in protein identification. This improved in-gel digestion protocol is simple and useful for protein identification by MALDI-TOFMS.  相似文献   

4.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used to analyze two enzymes, phospholipase A2 and fibrinolytic enzyme isolated from Chinese Agkistrodon blomhoffii Ussurensis venom. Using sinapinic acid as the matrix, positive ion mass spectra of the enzymes were obtained. In addition to the dominant protein [M + H]+ ions, multimeric and multiply charged ions were also observed in the mass spectra. The higher the concentration of the enzymes, the more multiply charged polymer and multimeric ions were detected. Our results indicate that MALDI-TOFMS can provide a rapid and accurate method for molecular weight determination of snake venom enzymes. Mass accuracies of 0.1 and 0.3% were achieved by analysis of highly dialyzed phospholipase A2 and fibrinolytic enzyme, and these results are much better than those obtained using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. MALDI-TOFMS thus provides a reliable method to determine the purity and molecular weight of these enzymes, which are of potential use as therapeutants.  相似文献   

5.
Three sample preparation strategies commonly employed in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOFMS) of whole bacterial cells were investigated for the detection of high mass signals; these included the dried droplet, the seed-layer/two-layer, and the bottom-layer methods. Different sample preparation approaches favoured the detection of high- or low-mass proteins. The low-mass peaks were best detected using the bottom-layer method. By contrast, the dried droplet method using a solvent with higher water content, and hence effecting a slower crystallization process, gave the best results for the detection of high-mass signals. Signals up to m/z 158 000 could be detected with this methodology for Bacillus sphaericus. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the same extracts used for MALDI-TOFMS showed bands in the molecular weight range in which high-mass peaks were observed in MALDI-MS, suggesting that the high-mass signals are not polymeric adducts of low-mass protein monomers. In addition, one of the high molecular weight proteins (approximately 126 kDa) was putatively identified as an S-layer protein by an in-gel tryptic digest. The bacterial samples spotted on the target wells for MALDI-TOFMS, using the different sample preparation strategies, were examined under a scanning electron microscope and differences were observed between the different strategies, suggesting that the nature of the crystals and the distribution of the analytes amidst the crystals could influence the spectral pattern observed in MALDI-TOFMS of whole bacterial cells. Finally, evidence is presented to indicate that, although the determinants are intact cells, cell lysis occurs both before and during the MALDI process.  相似文献   

6.
Phosphatidylcholine (PC) is one of the most abundant classes of phospholipids and is a major component of membranes in biological systems. Recently, PCs have been detected by direct tissue analysis using MALDI-TOFMS. However, these studies did not allow for the structural characterization of PCs in tissue. In the current study, an in situ method for detection and structural analysis of PC species in brain tissue was developed using a MALDI-TOF/TOF mass spectrometer. Initial profiling of lipids in tissue is performed by MALDI-TOFMS, which allows for the assignment of PC species. However, to confirm the structure of the PC species detected in tissue, MALDI-MS/MS analysis was employed. In this work, protonated, sodiated, and potassiated PC species were detected in brain tissue using DHA matrix. MALDI-MS/MS analysis of these species yielded fragments that verified a phosphocholine head group, but did not supply any fragments that would permit the identification of acyl substituents. To obtain more structural information, lithium adducts of PC species were produced using DHA matrix dissolved in 100 mM lithium chloride. MALDI-MS/MS analysis of lithiated PC species produced fragments that allowed for the identification and positional assignment of acyl groups in PC species.  相似文献   

7.
Scorpion venoms are very complex mixtures of molecules, most of which are peptides that display different kinds of biological activity. These venoms have been studied in the light of their pharmacological targets and their constituents are able to bind specifically to a variety of ionic channels located in prey tissues, resulting in neurotoxic effects. Toxins that modulate Na(+), K(+), Ca(++) and Cl(-) currents have been described in scorpion venoms. Mass spectrometry was employed to analyze toxic fractions from the venom of the Brazilian scorpion Tityus serrulatus in order to shed light on the molecular composition of this venom and to facilitate the search for novel pharmacologically active compounds. T. serrulatus venom was first subjected to gel filtration to separate its constituents according to their molecular size. The resultant fractions II and III, which account for 90 and 10% respectively of the whole venom toxic effect, were further analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), on-line liquid chromatography/electrospray mass spectrometry (LC/ESMS) and off-line LC/MALDI-TOFMS in order to establish their mass fingerprints. The molecular masses in fraction II were predominantly between 6500 and 7500 Da. This corresponds to long-chain toxins that mainly act on voltage-gated Na(+) channels. Fraction III is more complex and predominantly contained molecules with masses between 2500 and 5000 Da. This corresponds to the short-chain toxin family, most of which act on K(+) channels, and other unknown peptides. Finally, we were able to measure the molecular masses of 380 different compounds present in the two fractions investigated. To our knowledge, this is the largest number of components ever detected in the venom of a single animal species. Some of the toxins described previously from T. serrulatus venom could be detected by virtue of their molecular masses. The interpretation of this large set of data has provided us with useful proteomic information on the venom, and the implications of these findings are discussed.  相似文献   

8.
The application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) to the analysis of blood serum leads to the observation of a large variety of reproducible mass spectral peaks corresponding to blood components. In this study, the use of MALDI-TOFMS was developed as a tool for monitoring immune response to bacterial infection. Employing the MALDI-TOFMS approach, the levels of many components of blood were found to be immune response independent whereas others were found to correlate directly with the response of the immune system to two known types of bacteria (Staphylococcus aureus and Enterococcus faecalis). The methodologies reported here should be useful for the rapid monitoring of blood, especially that of the immune response mechanisms in various animal species.  相似文献   

9.
Characterization of the peptide content in snake venoms can be an important tool for the investigation of new pharmacological lead compounds. For this purpose, single-step analysis of crude venoms has recently been demonstrated using mass spectrometry (MS) techniques. Reproducible profiles of ions in MS and MS/MS spectra may also be used to compare venoms from different species. In this work matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used to obtain mass patterns of the major peptides (<8 kDa) found in pooled venoms from the genera Bothrops and Crotalus. Venoms from five different Bothrops species (B. jararaca, B. insularis, B. alternatus, B. jararacussu, and B. neuwiedi) and three Crotalus species (C. viridis, C. adamanteus and C. durissus terrificus) were analyzed. In agreement with other reports, venoms from Bothrops species contained a variety of peptides in the range m/z 1000-1500, and in some samples larger components (m/z 7000-8000) were detected. In the Crotalus species venoms were rich in peptides ranging from m/z 1000-1500 and 4000-5500. MS/MS experiments on the low molecular mass peptides (m/z 1000-1500) confirmed the presence of ten new bradykinin-potentiating peptides among venoms from genera Bothrops and Crotalus. In order to determine whether additional peptides could be identified after partial purification, B. jararaca venom was subjected to size-exclusion chromatography on Sephacryl S-200, and two distinct low molecular mass pools were analyzed further by MALDI-TOFMS. No additional peptides were detected from the pool with masses below 2000 Da but a substantial improvement with better resolution was observed for the pool with masses above 7000 Da, indicating that complex samples such as crude snake venoms can be analyzed for low molecular mass peptides using a single-step procedure.  相似文献   

10.
Venom variability in specimens of Tityus serrulatus scorpion was assessed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analyses. An expanded time lag venom extraction protocol was carried out using ten scorpions to study individual variations that might occur due to different rates in protein expression and/or processing. The first extraction of venom was made from the animals after 20 days of starvation, which allowed the venom gland to be filled up. The second extraction event was carried out 24 hours after the first one. The third was 8 days after the first extraction. By means of MALDI-TOF analyses, important variations were observed in venoms of a single specimen extracted at different times, especially in latter extraction events. These variations are most probably related to dynamics in cell gland production. Since T. serrulatus is a parthenogenetic species, sexual variations are naturally excluded and we did not expect intra-specific variations, which was confirmed. Knowledge of individual venom variability is extremely important to avoid misunderstandings in the use of venom proteomic analysis as a taxonomic tool.  相似文献   

11.
Bacillus subtilis synthesizes the lanthionine containing 32-amino-acid peptide antibiotic (lanti-biotic) subtilin from a ribosomally generated 56-amino-acid precursor pre-propeptide by extensive posttranslational modifications. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used to monitor the production of matured subtilin within crude samples taken from B. subtilis culture media without prior fractionation. The processing reaction of subtilin was blocked with the serine protease inhibitor phenylmethylsulfonyl fluoride and different subtilin precursor peptides in the molecular mass range up to 6220 were observed. Two of these species were isolated by reversed-phase high-performance liquid chromatography (HPLC) and structurally analyzed by post-source decay MALDI-TOFMS. We provide evidence that the precursor species comprise the posttranslational modified C-terminal part of subtilin to which leader peptide moieties with different chain lengths are attached. These antimicrobial-inactive species could be processed to antibiotic-active subtilin by incubation with culture media of different subtilin-nonproducing B. subtilis strains as indicated by a combination of antimicrobial growth assays and MALDI-TOFMS analyses. These achievements are strong evidence for the sensitivity of MALDI-TOFMS methodology that allows straightforward investigations of analytes even in complex mixtures without time-consuming sample preparations.  相似文献   

12.
Separation of a protein mixture by size-exclusion chromatography (SEC) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Identification of proteins in the collected fractions was performed both as intact proteins by MALDI-TOFMS and using peptide mass fingerprinting (PMF) after their digestion with trypsin. The presence of salts mostly disturbs the MALDI-TOFMS signal and, therefore, proper purification or desalting procedures must be employed. Four desalting procedures (desalting column packed with Sephadex G-100, on-target washing, centrifugal filter devices and ZipTip C(18)) for purification of fractions of proteins separated by SEC and their tryptic digests prior to determination of their exact molecular masses by MALDI-TOFMS were compared. In the case of intact proteins, the experiments showed that the best desalting procedures are the use of ZipTip C(18) pipette tips and Ultrafree CL centrifugal filter devices. The peptide digests can be purified by using ZipTip C(18) pipette tips or on-target washing when both of these procedures provide similar results. On-target washing can be used as a simple procedure to improve the mass spectra of salt-containing samples. Analyses of the droplets collected after the on-target washing show losses of sample and matrix caused by dissolution of these compounds during this procedure. Further, it was found that protein identification based on PMF is more sensitive than analyses of intact proteins and that multiple on-target washing is very advantageous for analyses of peptide mixtures with a high content of salts.  相似文献   

13.
Analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was applied for the characterization of Bacillus anthracis spore biomarkers. B. anthracis spores were extracted under a simple procedure, followed by linear mode analysis, using sinapinic acid as the matrix. Several markers with a mass range of 4-7 kDa were detected in three B. anthracis strains: Vollum, Sterne and V770-NP1-R. Similar spectra were also obtained for spore extracts of two members of the B. cereus group: B. thuringiensis and B. cereus, but not for B. mycoides, B. subtilis or B. licheniformis, suggesting that these markers are specific to closely related members of the B. cereus group. When alpha-cyano-4-hydroxycinnamic acid was used as the matrix, at least four additional new markers within a mass range of 2-4 kDa could be detected in all B. anthracis spore extracts. These markers, corresponding to a molecular weight of 2528.3, 2792.4, 3077.4, and 3590.7 Da, have not been observed in extracts of the three closely related Bacillus species - B. cereus, B. thuringiensis and B. mycoides. These unique B. anthracis biomarkers, which were isotopically resolved and reproducibly detected in the highly accurate MALDI-TOFMS reflectron mode, may be useful as a basis for rapid and specific identification of B. anthracis strains.  相似文献   

14.
Whole cells of Bifidobacterium lactis were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Characteristic and reproducible mass spectra were obtained in the mass range from 6 to 19 kDa. After several days of bacterial cell storage at 4 degrees C (D0, D2, and D6), only minor signal differences were observed. Under identical and reproducible conditions, fourteen relevant diagnostic ions were identified. Moreover, control- and stress-related fingerprints were rapidly obtained using MALDI-TOFMS by comparison of protein patterns obtained from non-stressed (control) versus stressed cells (addition of bile salts during growth). After quantitative validation of the MALDI-MS data by a statistical approach, two and eight signals were assigned as control- and stress-specific ions, respectively. This work provides the evidence that MALDI-TOFMS can be used for the identification of stress-related fingerprint of B. lactis bacterial cells and could have a high potential for the assessment of the physiological status of the cells.  相似文献   

15.
Mass spectrometry (MS) together with genome database searches serves as a powerful tool for the identification of proteins. In proteome analysis, mixtures of cellular proteins are usually separated by sodium dodecyl sulfate (SDS) polyacrylamide gel-based two-dimensional gel electrophoresis (2-DE) or one-dimensional gel electrophoresis (1-DE), and in-gel digested by a specific protease. In-gel protein digestion is one of the critical steps for sensitive protein identification by these procedures. Efficient protein digestion is required for obtaining peptide peaks necessary for protein identification by MS. This paper reports a remarkable improvement of protein digestion in SDS polyacrylamide gels using an acid-labile surfactant, sodium 3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy]-1-propanesulfonate (ALS). Pretreatment of gel pieces containing protein spots separated by 2-DE with a small amount of ALS prior to trypsin digestion led to increases in the digested peptides eluted from the gels. Consistently, treatment of gel pieces containing silver-stained standard proteins and those separated from tissue extracts resulted in the detection of increased numbers of peptide peaks in spectra obtained by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOFMS). Hence the present protocol with ALS provides a useful strategy for sensitive protein identification by MS.  相似文献   

16.
Variation in the snake venom proteome is well documented and it is a ubiquitous phenomenon at all taxonomical levels. However, variation in the snake venom peptidome is so far not described. In this work we used mass spectrometry [liquid chromatography/mass spectrometry (LC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOFMS)] to explore sex-based differences among the venom peptides of eighteen sibling specimens of Bothrops jararaca of a single litter born and raised in the laboratory. MALDI-TOFMS analyses showed individual variability among the bradykinin-potentiating peptides (BPPs), and, interestingly, four new peptides were detected only in female venoms and identified by de novo sequencing as cleaved BPPs lacking the C-terminal Q-I-P-P sequence. Similar results were obtained with venom from wild-caught adult non-sibling specimens of B. jararaca and in this case we were able to identify the gender of the specimen by analyzing the MALDI-TOF profile of the peptide fraction and finding the cleaved peptides only in female venoms. Synthetic replicates of the cleaved BPPs were less potent than the full-length BPP-10c in potentiating the bradykinin hypotensive effect, suggesting that the C-terminus is critical for the interaction of the BPPs with their mammalian molecular targets. This work represents a comprehensive mass spectrometric analysis of the peptide fraction of B. jararaca venom and shows for the first time sex-based differences in the snake venom peptidome of sibling and non-sibling snakes and suggests that the BPPs may follow distinct processing pathways in female and male individuals.  相似文献   

17.
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) can be used to determine number- and weight-average molecular weights of narrow polydispersity polymers. In this work, several possible sources of error in determining molecular weights of polymers with narrow polydispersity by MALDI-TOFMS are rigorously examined. These include the change in polymer distribution function, broadening or narrowing of the overall distribution, and the truncation of selected oligomer peaks within a distribution (i.e., the oligomer peaks at the high-and low-mass tails expected to be observed are not detected). These variations could be brought about by a limited detection sensitivity, background interference, and/or mass discrimination of oligomer analysis in MALDI-TOFMS. For narrow polydispersity polystyrenes, it is shown that by using an appropriate MALDI matrix and sample preparation protocol and a sensitive ion detection instrument, no systematic errors from these possible variations were detected within the experimental precision (0.5% relative standard deviation) of the MALDI method. It is concluded that MALDI mass spectrometry can provide accurate molecular weight and molecular weight distribution information for narrow polydispersity polymers, at least for polystyrenes examined in this work. The implications of this finding for polymer analysis are discussed.  相似文献   

18.
Identification of materials in color layers of paintings is necessary for correct decisions concerning restoration procedures as well as proving the authenticity of the painting. The proteins are usually important components of the painting layers. In this paper it has been demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) can be used for fast and reliable identification of proteins in color layers even in old, highly aged matrices. The digestion can be easily performed directly on silica wafers which are routinely used for infrared analysis. The amount of material necessary for such an analysis is extremely small. Peptide mass mapping using digestion with trypsin followed by MALDI-TOFMS and identification of the protein was successfully used for determination of the binder from a painting of the 19th century.  相似文献   

19.
A fast method for the detection of cheap sweeteners is presented. Detecting the adulteration of foods rich in carbohydrates is complicated by the presence of variety of commercial sweeteners that are designed to match exactly the major carbohydrate profiles of these foods. Electrophoretic and mass spectrometric assays for the determination of fruit juice authenticity were developed. Capillary zone electrophoresis with indirect detection was employed to detect adulteration of juices demonstrated by the ratio of the concentrations of major low molecular mass saccharides (glucose, fructose and sucrose). Traces of oligosaccharides, which are not present in the sugar profiles of citrus fruits but are present in inexpensive sweeteners, were evaluated as the other group of target compounds. The fast determination of oligomeric starch hydrolysates in a complex matrix was tested by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and applied to orange juice. MALDI-TOFMS was shown to be a suitable method for the identification of adulteration of fruit juices by starch hydrolysates. The effects of the presence of salts and low molecular mass saccharides on the detection of oligosaccharides by MALDI-TOFMS were studied. Low molecular mass saccharides and organic acids decrease the detectability of oligosaccharides by MALDI-TOFMS, but the concentration of maltooligosaccharides present in juices sweetened with starch hydrolysates is high enough to be detected with good sensitivity.  相似文献   

20.
The fungal spores of Penicillium expansum, P. chrysogenum, P. citrinum, P. digitatum, P. italicum, and P. pinophilum were characterized by using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-TOFMS). These fungal spores are frequently found in grain and fruit. The mass spectra of these six species were directly obtained from the intact spores without any pretreatment. The results obtained indicate that 2,5-dihydroxybenzoic acid and sinapinic acid are suitable matrices for the analysis of Penicillium spores. Characteristic ions representing the different species were obtained with sufficiently high reproducibility that these ions can be employed to identify the different fungal species. On the basis of these characteristic ions obtained from these authentic Penicillium spores, the approach was applied to characterize the fungal species contaminating the surfaces of fruit. It was demonstrated that the fungal spores directly scratched from the surfaces of fruit contaminated by unknown fungi can be rapidly identified using MALDI-TOFMS analysis without any tedious pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号