首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, strong convergence theorems for approximation of common fixed points of a finite family of asymptotically demicontractive mappings are proved in Banach spaces using the new composite implicit iteration scheme with errors. Our results of this paper improve and extend the corresponding results of Chen, Song, Zhou [R.D. Chen, Y.S. Song, H.Y. Zhou, Convergence theorems for implicit iteration process for a finite family of continuous pseudocontractive mappings, J. Math. Anal. Appl. 314 (2006) 701–709], Osilike [M.O. Osilike, Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 294 (2004) 73–81], Gu [F. Gu, The new composite implicit iterative process with errors for common fixed points of a finite family of strictly pseudocontractive mappings, J. Math. Anal. Appl. 329 (2007) 766–776] and Yang and Hu [L.P. Yang, G. Hu, Convergence of implicit iteration process with random errors, Acta Math. Sinica (Chin. Ser.) 51 (1) (2008) 11–22].  相似文献   

2.
In this paper, a necessary and sufficient conditions for the strong convergence to a common fixed point of a finite family of continuous pseudocontractive mappings are proved in an arbitrary real Banach space using an implicit iteration scheme recently introduced by Xu and Ori [H.K. Xu, R.G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Fuct. Anal. Optim. 22 (2001) 767-773] in condition αn∈(0,1], and also strong and weak convergence theorem of a finite family of strictly pseudocontractive mappings of Browder-Petryshyn type is obtained. The results presented extend and improve the corresponding results of M.O. Osilike [M.O. Osilike, Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 294 (2004) 73-81].  相似文献   

3.
In this paper we propose a new modified Mann iteration for computing common fixed points of nonexpansive mappings in a Banach space. We give certain different control conditions for the modified Mann iteration. Then, we prove strong convergence theorems for a countable family of nonexpansive mappings in uniformly smooth Banach spaces. These results improve and extend results of Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51–60], Yao, et al. [Y. Yao, R. Chen and J. Yao, Strong convergence and certain control conditions for modified Mann iteration, Nonlinear Anal. 68 (2008) 1687–1693], Qin and Su [X. Qin, Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007) 415–424], and many others.  相似文献   

4.
Viscosity approximation methods for a family of finite nonexpansive mappings are established in Banach spaces. The main theorems extend the main results of Moudafi [Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000) 46–55] and Xu [Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004) 279–291] to the case of finite mappings. Our results also improve and unify the corresponding results of Bauschke [The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996) 150–159], Browder [Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Archiv. Ration. Mech. Anal. 24 (1967) 82–90], Cho et al. [Some control conditions on iterative methods, Commun. Appl. Nonlinear Anal. 12 (2) (2005) 27–34], Ha and Jung [Strong convergence theorems for accretive operators in Banach spaces, J. Math. Anal. Appl. 147 (1990) 330–339], Halpern [Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967) 957–961], Jung [Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005) 509–520], Jung et al. [Iterative schemes with some control conditions for a family of finite nonexpansive mappings in Banach space, Fixed Point Theory Appl. 2005 (2) (2005) 125–135], Jung and Kim [Convergence of approximate sequences for compositions of nonexpansive mappings in Banach spaces, Bull. Korean Math. Soc. 34 (1) (1997) 93–102], Lions [Approximation de points fixes de contractions, C.R. Acad. Sci. Ser. A-B, Paris 284 (1977) 1357–1359], O’Hara et al. [Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 54 (2003) 1417–1426], Reich [Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) 287–292], Shioji and Takahashi [Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (12) (1997) 3641–3645], Takahashi and Ueda [On Reich's strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984) 546–553], Wittmann [Approximation of fixed points of nonexpansive mappings, Arch. Math. 59 (1992) 486–491], Xu [Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2) (2002) 240–256], and Zhou et al. [Strong convergence theorems on an iterative method for a family nonexpansive mappings in reflexive Banach spaces, Appl. Math. Comput., in press] among others.  相似文献   

5.
Convergence theorems for approximation of common fixed points of strictly pseudocontractive mappings of Browder-Petryshyn type are proved in Banach spaces using a new composite implicit iteration scheme with errors. The results presented in this paper generalize and improve the corresponding results of M.O. Osilike [M.O. Osilike, Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps, J. Math. Anal. Appl. 294 (2004) 73-81].  相似文献   

6.
The purpose of this paper is to study the weak and strong convergence of implicit iteration process with errors to a common fixed point for a finite family of asymptotically nonexpansive mappings and nonexpansive mappings in Banach spaces. The results presented in this paper extend and improve the corresponding results of [H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996) 150-159; B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967) 957-961; P.L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Paris, Ser. A 284 (1977), 1357-1359; S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) 287-292; Z.H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286 (2003) 351-358; R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486-491; H.K. Xu, M.G. Ori, An implicit iterative process for nonexpansive mappings, Numer. Funct. Anal. Optimiz. 22 (2001) 767-773; Y.Y. Zhou, S.S. Chang, Convergence of implicit iterative process for a finite family of asymptotically nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optimiz. 23 (2002) 911-921].  相似文献   

7.
The purpose of this paper is by using CSQ method to study the strong convergence problem of iterative sequences for a pair of strictly asymptotically pseudocontractive mappings to approximate a common fixed point in a Hilbert space. Under suitable conditions some strong convergence theorems are proved. The results presented in the paper are new which extend and improve some recent results of Acedo and Xu [Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal., 67(7), 2258??271 (2007)], Kim and Xu [Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups. Nonlinear Anal., 64, 1140??152 (2006)], Martinez-Yanes and Xu [Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal., 64, 2400??411 (2006)], Nakajo and Takahashi [Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl., 279, 372??79 (2003)], Marino and Xu [Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces. J. Math. Anal. Appl., 329(1), 336??46 (2007)], Osilike et al. [Demiclosedness principle and convergence theorems for k-strictly asymptotically pseudocontractive maps. J. Math. Anal. Appl., 326, 1334??345 (2007)], Liu [Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings. Nonlinear Anal., 26(11), 1835??842 (1996)], Osilike et al. [Fixed points of demi-contractive mappings in arbitrary Banach spaces. Panamer Math. J., 12 (2), 77??8 (2002)], Gu [The new composite implicit iteration process with errors for common fixed points of a finite family of strictly pseudocontractive mappings. J. Math. Anal. Appl., 329, 766??76 (2007)].  相似文献   

8.
The purpose of this paper is to study the strong convergence of a general iterative scheme to find a common element of the set of fixed points of a nonexpansive mapping, the set of solutions of variational inequality for a relaxed cocoercive mapping and the set of solutions of an equilibrium problem. Our results extend the recent results of Takahashi and Takahashi [S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506–515], Marino and Xu [G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006) 43–52], Combettes and Hirstoaga [P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 486–491], Iiduka and Takahashi, [H. Iiduka, W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005) 341–350] and many others.  相似文献   

9.
In this paper, we introduce a composite iterative scheme by viscosity approximation method for finding a zero of an accretive operator in Banach spaces. Then, we establish strong convergence theorems for the composite iterative scheme. The main theorems improve and generalize the recent corresponding results of Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51-60], Qin and Su [X. Qin, Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007) 415-424] and Xu [H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006) 631-643] as well as Aoyama et al. [K. Aoyama, Y Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in Banach spaces, Nonlinear Anal. 67 (2007) 2350-2360], Benavides et al. [T.D. Benavides, G.L. Acedo, H.K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr. 248-249 (2003) 62-71], Chen and Zhu [R. Chen, Z. Zhu, Viscosity approximation fixed points for nonexpansive and m-accretive operators, Fixed Point Theory and Appl. 2006 (2006) 1-10] and Kamimura and Takahashi [S. Kamimura, W. Takahashi, Approximation solutions of maximal monotone operators in Hilberts spaces, J. Approx. Theory 106 (2000) 226-240].  相似文献   

10.
在适当的条件下,证明了有限族严格伪压缩映象具误差的隐迭代序列强收敛于其公共不动点. 所得结果改进了Osilike 与 Xu, Ori 的相应结果.  相似文献   

11.
The purpose in this paper is to prove a theorem of strong convergence to a common solution for a finite family of accretive operators in a strictly convex Banach space by means of a new iterative algorithm, which is a generalization and extension of the results of Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51–60], and Zegeye and Shahzad [H. Zegeye, N. Shahzad, Strong convergence theorems for a common zero of a finite family of m-accretive mappings, Nonlinear Anal. 66 (2007) 1161–1169]. Further using the result, the theorem of strong convergence to a common fixed point is discussed for a finite family of pseudocontractive mappings under certain conditions.  相似文献   

12.
In this paper, we introduce a new iterative scheme for finding a common element of the set of solutions of an equilibrium problem, the set of common fixed point for a family of infinitely nonexpansive mappings and the set of solutions of the variational inequality for αα-inverse-strongly monotone mappings in a Hilbert space. Under suitable conditions, some strong convergence theorems for approximating a common element of the above three sets are obtained. As applications, at the end of the paper we utilize our results to study the optimization problem and some convergence problem for strictly pseudocontractive mappings. The results presented in the paper extend and improve some recent results of Yao and Yao [Y.Y. Yao, J.C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput. 186 (2) (2007) 1551–1558], Plubtieng and Punpaeng [S. Plubtieng, R. Punpaeng, A new iterative method for equilibrium problems and fixed point problems of nonlinear mappings and monotone mappings, Appl. Math. Comput. (2007) doi:10.1016/j.amc.2007.07.075], S. Takahashi and W. Takahashi [S. Takahashi, W. Takahashi, Viscosity approximation methods for Equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2006) 506–515], Su, Shang and Qin [Y.F. Su, M.J. Shang, X.L. Qin, An iterative method of solution for equilibrium and optimization problems, Nonlinear Anal. (2007) doi:10.1016/j.na.2007.08.045] and Chang, Cho and Kim [S.S. Chang, Y.J. Cho, J.K. Kim, Approximation methods of solutions for equilibrium problem in Hilbert spaces, Dynam. Systems Appl. (in print)].  相似文献   

13.
In this paper we propose a new modified Mann iteration for computing fixed points of nonexpansive mappings in a Banach space setting. This new iterative scheme combines the modified Mann iteration introduced by Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51–60] and the viscosity approximation method introduced by Moudafi [A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000) 46–55]. We give certain different control conditions for the modified Mann iteration. Strong convergence in a uniformly smooth Banach space is established.  相似文献   

14.
The purpose of this paper is to study the strong convergence of a process of implicit iteration to a common fixed point for a finite family of asymptotically hemi-contractive mappings. Our results extend a recent result of M.O. Osilike and B.G. Akuchu [Common fixed points of a finite family of asymptotically pseudocontractive maps, Fixed Point Theory Appl. 2 (2004) 81–88] from Hilbert spaces to pp-uniformly convex Banach spaces with p>1p>1.  相似文献   

15.
含有非扩张型映射的非线性算子方程的隐式迭代法,从2001年由H.K.Xu和R.G.Ori引入以来,已有许多学者进行了研究,得出了一些有意义的成果.最近M.O.Osilike对Browder-Petyshyn意义下的严格伪压缩映象的隐迭代过程,也做出了部分研究成果,但对严格渐近伪压缩映象未曾涉及.本文将主要研究Browder-Petyshyn意义下的严格渐近伪压缩映象的隐迭代过程.并讨论它们的收敛性问题.  相似文献   

16.
Recently, Agarwal, Cho, Li and Huang [R.P. Agarwal, Y.J. Cho, J. Li, N.J. Huang, Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl. 272 (2002) 435-447] introduced the new iterative procedures with errors for approximating the common fixed point of a couple of quasi-contractive mappings and showed the stability of these iterative procedures with errors in Banach spaces. In this paper, we introduce a new concept of a couple of q-contractive-like mappings (q>1) in a Banach space and apply these iterative procedures with errors for approximating the common fixed point of the couple of q-contractive-like mappings. The results established in this paper improve, extend and unify the corresponding ones of Agarwal, Cho, Li and Huang [R.P. Agarwal, Y.J. Cho, J. Li, N.J. Huang, Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in q-uniformly smooth Banach spaces, J. Math. Anal. Appl. 272 (2002) 435-447], Chidume [C.E. Chidume, Approximation of fixed points of quasi-contractive mappings in Lp spaces, Indian J. Pure Appl. Math. 22 (1991) 273-386], Chidume and Osilike [C.E. Chidume, M.O. Osilike, Fixed points iterations for quasi-contractive maps in uniformly smooth Banach spaces, Bull. Korean Math. Soc. 30 (1993) 201-212], Liu [Q.H. Liu, On Naimpally and Singh's open questions, J. Math. Anal. Appl. 124 (1987) 157-164; Q.H. Liu, A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings, J. Math. Anal. Appl. 146 (1990) 301-305], Osilike [M.O. Osilike, A stable iteration procedure for quasi-contractive maps, Indian J. Pure Appl. Math. 27 (1996) 25-34; M.O. Osilike, Stability of the Ishikawa iteration method for quasi-contractive maps, Indian J. Pure Appl. Math. 28 (1997) 1251-1265] and many others in the literature.  相似文献   

17.
The purpose of this paper is to study the weak convergence problems of the irnplicity iteration process for Lipschitzian pseudocontraction semigroups in general Banach spaces. The results presented in this paper extend and improve the corresponding results of Zhou [Nonlinear Anal., 68, 2977-2983 (2008)], Chen, et ah [J. Math. Anal. Appl., 314, 701 709 (2006)], Xu and Ori [Numer. Funct. Anal. Optim, 22, 767-773 (2001)] and Osilike [J. Math. Anal. Appl., 294, 73-81 (2004)]. Keywords  相似文献   

18.
This work is concerned with the strong convergence of an approximating common fixed point sequence of a finite family of multi-valued mappings in a uniformly convex and smooth Banach space using an implicit iteration scheme introduced by Xu and Ori [H.K. Xu, R.G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22 (2001) 767–773].  相似文献   

19.
In this paper, the equivalence of the strong convergence between the modified Mann and Ishikawa iterations with errors in two different schemes by Xu [Y.G. Xu, Ishikawa and Mann iteration process with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224 (1998) 91-101] and Liu [L.S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995) 114-125] respectively is proven for the generalized strongly successively Φ-pseudocontractive mappings without Lipschitzian assumption. Our results generalize the recent results of the papers [Zhenyu Huang, F. Bu, The equivalence between the convergence of Ishikawa and Mann iterations with errors for strongly successively pseudocontractive mappings without Lipschitzian assumption, J. Math. Anal. Appl. 325 (1) (2007) 586-594; B.E. Rhoades, S.M. Soltuz, The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps, J. Math. Anal. Appl. 289 (2004) 266-278; B.E. Rhoades, S.M. Soltuz, The equivalence between Mann-Ishikawa iterations and multi-step iteration, Nonlinear Anal. 58 (2004) 219-228] by extending to the most general class of the generalized strongly successively Φ-pseudocontractive mappings and hence improve the corresponding results of all the references given in this paper by providing the equivalence of convergence between all of these iteration schemes for any initial points u1, x1 in uniformly smooth Banach spaces.  相似文献   

20.
In this paper, we prove strong convergence theorems by the hybrid method for a family of hemi-relatively nonexpansive mappings in a Banach space. Our results improve and extend the corresponding results given by Qin et al. [Xiaolong Qin, Yeol Je Cho, Shin Min Kang, Haiyun Zhou, Convergence of a modified Halpern-type iteration algorithm for quasi-?-nonexpansive mappings, Appl. Math. Lett. 22 (2009) 1051-1055], and at the same time, our iteration algorithm is different from the Kimura and Takahashi algorithm, which is a modified Mann-type iteration algorithm [Yasunori Kimura, Wataru Takahashi, On a hybrid method for a family of relatively nonexpansive mappings in Banach space, J. Math. Anal. Appl. 357 (2009) 356-363]. In addition, we succeed in applying our algorithm to systems of equilibrium problems which contain a family of equilibrium problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号