首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the paper we find a set of necessary conditions that must be satisfied by a quadratic system in order to have an algebraic limit cycle. We find a countable set of ?5 parameter families of quadratic systems such that every quadratic system with an algebraic limit cycle must, after a change of variables, belong to one of those families. We provide a classification of all the quadratic systems which can have an algebraic limit cycle based on geometrical properties of the embedding of the system in the Poincaré compactification of R2. We propose names for all the classes we distinguish and we classify all known examples of quadratic systems with algebraic limit cycle. We also prove the integrability of certain classes of quadratic systems.  相似文献   

2.
This work deals with planar polynomial differential systems , . We give a set of necessary conditions for a system to have an invariant algebraic curve. These conditions are determined from the value of the cofactor at the singular points of the system, once considered in a compact space. We apply these results to show the non-Liouvillian integrability of several families of quadratic systems with an algebraic limit cycle.  相似文献   

3.
We show that every finite configuration of disjoint simple closed curves in the plane is topologically realizable as the set of limit cycles of a polynomial Liénard equation. The related vector field X is Morse–Smale. Moreover it has the minimum number of singularities required for realizing the configuration in a Liénard equation. We provide an explicit upper bound on the degree of X, which is lower than the results obtained before, obtained in the context of general polynomial vector fields.  相似文献   

4.
Classical Liénard equations are two-dimensional vector fields, on the phase plane or on the Liénard plane, related to scalar differential equations . In this paper, we consider f to be a polynomial of degree 2l−1, with l a fixed but arbitrary natural number. The related Liénard equation is of degree 2l. We prove that the number of limit cycles of such an equation is uniformly bounded, if we restrict f to some compact set of polynomials of degree exactly 2l−1. The main problem consists in studying the large amplitude limit cycles, of which we show that there are at most l.  相似文献   

5.
We study a particular class of autonomous Differential-Algebraic Equations that are equivalent to Ordinary Differential Equations on manifolds. Under appropriate assumptions we determine a straightforward formula for the computation of the degree of the associated tangent vector field that does not require any explicit knowledge of the manifold. We use this formula to study the set of harmonic solutions to periodic perturbations of our equations. Two different classes of applications are provided.  相似文献   

6.
We describe the set of bounded or almost periodic solutions of the following Liénard system: , where is almost periodic, is a symmetric and nonsingular linear operator, and F denotes the gradient of the convex function F on RN. Then, we state a result of existence and uniqueness of almost periodic solution.  相似文献   

7.
The averaging method is one of the most powerful methods used to analyse differential equations appearing in the study of nonlinear problems. The idea behind the averaging method is to replace the original equation by an averaged equation with simple structure and close solutions. A large number of practical problems lead to differential equations with discontinuous right-hand sides. In a rigorous theory of such systems, developed by Filippov, solutions of a differential equation with discontinuous right-hand side are regarded as being solutions to a special differential inclusion with upper semi-continuous right-hand side. The averaging method was studied for such inclusions by many authors using different and rather restrictive conditions on the regularity of the averaged inclusion. In this paper we prove natural extensions of Bogolyubov’s first theorem and the Samoilenko-Stanzhitskii theorem to differential inclusions with an upper semi-continuous right-hand side. We prove that the solution set of the original differential inclusion is contained in a neighbourhood of the solution set of the averaged one. The extension of Bogolyubov’s theorem concerns finite time intervals, while the extension of the Samoilenko-Stanzhitskii theorem deals with solutions defined on the infinite interval. The averaged inclusion is defined as a special upper limit and no additional condition on its regularity is required.  相似文献   

8.
The classical H. Poincaré Center-Focus problem asks about the characterization of planar polynomial vector fields such that all their integral trajectories are closed curves whose interiors contain a fixed point, a center. This problem can be reduced to a center problem for some ordinary differential equation whose coefficients are trigonometric polynomials depending polynomially on the coefficients of the field. In this paper we show that the set of centers in the Center-Focus problem can be determined as the set of zeros of some continuous functions from the moments of coefficients of this equation.  相似文献   

9.
Let W be a weight-homogeneous planar polynomial differential system with a center. We find an upper bound of the number of limit cycles which bifurcate from the period annulus of W under a generic polynomial perturbation. We apply this result to a particular family of planar polynomial systems having a nilpotent center without meromorphic first integral.  相似文献   

10.
We consider the Krein systems. For the set of Stummel class coefficients, we establish the criterion in terms of these coefficients for the system to satisfy the Szegö-type estimate on the spectral measure.  相似文献   

11.
This work deals with limit cycles of real planar analytic vector fields. It is well known that given any limit cycle Γ of an analytic vector field it always exists a real analytic function f0(x,y), defined in a neighborhood of Γ, and such that Γ is contained in its zero level set. In this work we introduce the notion of f0(x,y) being an m-solution, which is a merely analytic concept. Our main result is that a limit cycle Γ is of multiplicity m if and only if f0(x,y) is an m-solution of the vector field. We apply it to study in some examples the stability and the bifurcation of periodic orbits from some non-hyperbolic limit cycles.  相似文献   

12.
In this article we discuss some qualitative and geometric aspects of non-smooth dynamical systems theory. Our goal is to study the diagram bifurcation of typical singularities that occur generically in one parameter families of certain piecewise smooth vector fields named Refracted Systems. Such systems has a codimension-one submanifold as its discontinuity set.  相似文献   

13.
We discuss planar polynomial vector fields with prescribed Darboux integrating factors, in a nondegenerate affine geometric setting. We establish a reduction principle which transfers the problem to polynomial solutions of certain meromorphic linear systems, and show that the space of vector fields with a given integrating factor, modulo a subspace of explicitly known “standard” vector fields, has finite dimension. For several classes of examples we determine this space explicitly.  相似文献   

14.
We study on what one calls a constrained system of ODEs on It consists of two ordinary differential equations and an algebraic equation with respect to three unknown functions. We seek closed orbits of such a system. A necessary and sufficient condition for the system to have non-trivial closed orbits is given. Elementary tools such as Lyapunov functions and Poincaré’s index theory are used in the proof of the result. As an application we consider a constrained system associated with a non-constraint system of ODEs called the modified Bonhöffer-van der Pol system.  相似文献   

15.
Let (x(t),y(t))? be a solution of a Fuchsian system of order two with three singular points. The vector space of functions of the form P(t)x(t)+Q(t)y(t), where P,Q are real polynomials, has a natural filtration of vector spaces, according to the asymptotic behavior of the functions at infinity. We describe a two-parameter class of Fuchsian systems, for which the corresponding vector spaces obey the Chebyshev property (the maximal number of isolated zeros of each function is less than the dimension of the vector space). Up to now, only a few particular systems were known to possess such a non-oscillation property. It is remarkable that most of these systems are of the type studied in the present paper. We apply our results in estimating the number of limit cycles that appear after small polynomial perturbations of several quadratic or cubic Hamiltonian systems in the plane.  相似文献   

16.
We study systems that are monotone in a generalized sense with respect to cones of rank 2. The main result of the paper is the existence of a Poincaré-Bendixson property for some solutions of those systems.  相似文献   

17.
In this paper, we consider a modified delay differential equation model of the growth of n-species of plankton having competitive and allelopathic effects on each other. We first obtain the sufficient conditions which guarantee the permanence of the system. As a corollary, for periodic case, we obtain a set of delay-dependent condition which ensures the existence of at least one positive periodic solution of the system. After that, by means of a suitable Lyapunov functional, sufficient conditions are derived for the global attractivity of the system. For the two-dimensional case, under some suitable assumptions, we prove that one of the components will be driven to extinction while the other will stabilize at a certain solution of a logistic equation. Examples show the feasibility of the main results.  相似文献   

18.
We deal with an autonomous Hamiltonian system with two degrees of freedom. We assume that the Hamiltonian function is analytic in a neighborhood of the phase space origin, which is an equilibrium point. We consider the case when two imaginary eigenvalues of the matrix of the linearized system are in the ratio 3: 1. We study nonlinear conditionally periodic motions of the system in the vicinity of the equilibrium point. Omitting the terms of order higher then five in the normalized Hamiltonian we analyze the so-called truncated system in detail. We show that its general solution can be given in terms of elliptic integrals and elliptic functions. The motions of truncated system are either periodic, or asymptotic to a periodic one, or conditionally periodic. By using the KAM theory methods we show that most of the conditionally periodic trajectories of the truncated systems persist also in the full system. Moreover, the trajectories that are not conditionally periodic in the full system belong to a subset of exponentially small measure. The results of the study are applied for the analysis of nonlinear motions of a symmetric satellite in a neighborhood of its cylindric precession.  相似文献   

19.
For nonautonomous dynamical systems a bifurcation can be understood as topological change in the set of bounded entire solutions to a given time-dependent evolutionary equation. Following this idea, a Fredholm theory via exponential dichotomies on semiaxes enables us to employ tools from analytical branching theory yielding nonautonomous versions of fold, transcritical and pitchfork patterns. This approach imposes the serious hypothesis that precise quantitative information on the dichotomies is required — an assumption hard to satisfy in applications. Thus, imperfect bifurcations become important.In this paper, we discuss persistence and changes in the previously mentioned bifurcation scenarios by including an additional perturbation parameter. While the unperturbed case captures the above bifurcation patterns, we obtain their unfolding and therefore the local branching picture in a whole neighborhood of the system. Using an operator formulation of parabolic differential, Carathéodory differential and difference equations, this will be achieved on the basis of recent abstract analytical techniques due to Shi (1999) and Liu, Shi and Wang (2007).  相似文献   

20.
In this paper we study the number of critical points that the period function of a center of a classical Liénard equation can have. Centers of classical Liénard equations are related to scalar differential equations , with f an odd polynomial, let us say of degree 2?−1. We show that the existence of a finite upperbound on the number of critical periods, only depending on the value of ?, can be reduced to the study of slow-fast Liénard equations close to their limiting layer equations. We show that near the central system of degree 2?−1 the number of critical periods is at most 2?−2. We show the occurrence of slow-fast Liénard systems exhibiting 2?−2 critical periods, elucidating a qualitative process behind the occurrence of critical periods. It all provides evidence for conjecturing that 2?−2 is a sharp upperbound on the number of critical periods. We also show that the number of critical periods, multiplicity taken into account, is always even.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号