首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper considers the limit cycle bifurcation problem of planar piecewise differential systems with three zones. Some computation formulas studied the problem of limit cycle bifurcations are provided by introducing multiple parameters. As an application to the obtained method, the number of limit cycles of a piecewise linear system with three zones studied in Lima et al. (2017) is discussed and some more limit cycles are found.  相似文献   

2.
For a given family of planar differential equations it is a very difficult problem to determine an upper bound for the number of its limit cycles. Even when this upper bound is one it is not always an easy problem to distinguish between the case of zero and one limit cycle. This note mainly deals with this second problem for a family of systems with a homogeneous nonlinear part. While the condition that allows us to separate the existence and the nonexistence of limit cycles can be described, it is very intricate.

  相似文献   


3.
This paper is concerned with the problem of limit cycle bifurcation for piecewise smooth near-Hamiltonian systems with multiple parameters. By the first Melnikov function, some novel criteria have been established for the existence of multiple limit cycles. Furthermore, an example is included to validate the obtained results by considering the maximum number of limit cycles for a piecewise quadratic system studied in Llibre and Mereu (2014) [12]. Compared with the result in the above reference, one more limit cycle is found by our method.  相似文献   

4.
The number of limit cycles for three dimensional Lotka–Volterra systems is an open problem. Recently, Yu et al. (2016) constructed some examples with the possibility of the existence of four limit cycles. Unfortunately, multiple limit cycles are not visible by numerical simulations, because all of them are very close to the interior equilibrium and extremely small. We present a concrete example with multiple limit cycles for three dimensional Lotka–Volterra systems which we can confirm them by numerical simulations. First we prepare the modified formula to compute coefficients of the normal form for the generalized Hopf bifurcation. Applying this formula to three dimensional Lotka–Volterra competitive systems with the aid of the computer algebra system, we derive the critical parameter values explicitly such that the interior equilibrium is exactly an unstable weak focus. Also we show that the heteroclinic cycle on the boundary of R+3 is repelling. This implies that there exists a stable limit cycle by the Poincare–Bendixson theorem. Then, adding some suitable perturbations to parameters, we generate additional two limit cycles near the interior equilibrium by the generalized Hopf bifurcation. Finally we confirm that there exist three limit cycles by numerical simulations.  相似文献   

5.
6.
The existence of cycles of the second kind was considered for uncertain pendulum-like systems with several nonlinearities. On the basis of the Kalman–Yakubovich–Popov (KYP) lemma, linear matrix inequality (LMI) conditions guaranteeing the existence of cycles of the second kind for such nonlinear systems under parameter uncertainties are established. By virtue of these results, an interesting conclusion is reached: that the synthesis problem ensuring the existence of cycles of the second kind for such an uncertain nonlinear system can be converted into a synthesis problem for a system without uncertainties. A concrete application to a synchronous machine demonstrates the validity of the proposed approach.  相似文献   

7.
研究一类平面2n 1次多项式微分系统的极限环问题,利用Hopf分枝理论得到了该系统极限环存在性与稳定性的若干充分条件,利用Cherkas和Zheilevych的唯一性定理得到了极限环唯一性的若干充分条件.  相似文献   

8.
In this note, a practical way to compute limit cycles in context of hybrid systems is investigated. As in many hybrid applications the steady state is depicted by a limit cycle, control design and stability analysis of such hybrid systems require the knowledge of this periodic motion. Analytical expression of this cycle is generally an impossible task due to the complexity of the dynamic. A fast algorithm is proposed and used to determine these cycles in the case where the switching sequence is known.  相似文献   

9.
In this paper we investigate the limit cycles of planar piecewise linear differential systems with two zones separated by a straight line. It is well known that when these systems are continuous they can exhibit at most one limit cycle, while when they are discontinuous the question about maximum number of limit cycles that they can exhibit is still open. For these last systems there are examples exhibiting three limit cycles.The aim of this paper is to study the number of limit cycles for a special kind of planar discontinuous piecewise linear differential systems with two zones separated by a straight line which are known as refracting systems. First we obtain the existence and uniqueness of limit cycles for refracting systems of focus-node type. Second we prove that refracting systems of focus–focus type have at most one limit cycle, thus we give a positive answer to a conjecture on the uniqueness of limit cycle stated by Freire, Ponce and Torres in Freire et al. (2013). These two results complete the proof that any refracting system has at most one limit cycle.  相似文献   

10.
To estimate the number of limit cycles appearing under a perturbation of a quadratic system that has a center with symmetry, we use the method of generalized Dulac functions. To this end, we reduce the perturbed system to a Liénard system with a small parameter, for which we construct a Dulac function depending on the parameter. This permits one to estimate the number of limit cycles in the perturbed system for all sufficiently small parameter values. We find the Dulac function by solving a linear programming problem. The suggested method is used to analyze four specific perturbed systems that globally have exactly three limit cycles [i.e., the limit cycle distribution 3 or (3, 0)] and two systems that have the limit cycle distribution (3, 1) (i.e., one nest around each of the two foci).  相似文献   

11.
Chiang [C. Chiang, Optimal ordering policies for periodic-review systems with replenishment cycles, European Journal of Operational Research 170 (2006) 44–56] recently proposed a dynamic programming model for periodic-review systems in which a replenishment cycle consists of a number of small periods (each of identical but arbitrary length) and holding and shortage costs are charged based on the ending inventory of small periods. The current paper presents an alternative (and concise) dynamic programming model. Moreover, we allow the possibility of a positive fixed cost of ordering. The optimal policy is of the familiar (sS) type because of the convexity of the one-cycle cost function. As in the periodic-review inventory literature, we extend this result to the lost-sales periodic problem with zero lead-time. Computation shows that the long-run average cost is rather insensitive to the choice of the period length. In addition, we show how the proposed model is modified to handle the backorder problem where shortage is charged on a per-unit basis irrespective of its duration. Finally, we also investigate the lost-sales problem with positive lead-time, and provide some computational results.  相似文献   

12.
The problem of exact nonlocal estimation of the number of limit cycles surrounding one point of rest in a simply connected domain of the real phase space is considered for autonomous systems of differential equations with continuously differentiable right-hand sides. Three approaches to solving this problem are proposed that are based on sequential two-step usage of the Dulac–Cherkas criterion, which makes it possible to find closed transversal curves dividing the connected domain in doubly connected subdomains that surround the point of rest, with the system having precisely one limit cycle in each of them. The effectiveness of these approaches is exemplified with polynomial Liènard systems, a generalized van der Pol system, and a perturbed Hamiltonian system. For some systems, the derived estimate holds true in the entire phase space.  相似文献   

13.
In this paper, the limit cycle bifurcation problem is investigated for a class of planar discontinuous perturbed systems with $n$ parallel switch lines. Under the assumption that the unperturbed system has a family of periodic orbits crossing all of the lines, an explicit expression of the first order Melnikov function along the periodic orbits is presented, which plays an important role in studying the problem of limit cycle bifurcations. As an application of the established method, the maximal number of limit cycles of a discontinuous system is considered.  相似文献   

14.
For autonomous systems on the real plane, we develop a regular method for localizing and estimating the number of limit cycles surrounding the unique singular point. The method is to divide the phase plane into annulus-shaped domains with transversal boundaries in each of which a Dulac function is constructed by solving an optimization problem, which permits one to use the Bendixson-Dulac criterion. We state the principle of reduction to global uniqueness and use it in the case of existence of an Andronov-Hopf function of limit cycles to obtain a sharp global estimate of the number of limit cycles for an individual system as well as for a one-parameter family of such systems in an unbounded domain.  相似文献   

15.
In this paper, we deal with the problem of limit cycle bifurcation near a 2-polycycle or 3-polycycle for a class of integrable systems by using the first order Melnikov function. We first get the formal expansion of the Melnikov function corresponding to the heteroclinic loop and then give some computational formulas for the first coefficients of the expansion. Based on the coefficients, we obtain a lower bound for the maximal number of limit cycles near the polycycle. As an application of our main results, we consider quadratic integrable polynomial systems, obtaining at least two limit cycles.  相似文献   

16.
In this paper, we first study the problem of finding the maximum number of zeros of functions with parameters and then apply the results obtained to smooth or piecewise smooth planar autonomous systems and scalar periodic equations to study the number of limit cycles or periodic solutions, improving some fundamental results both on the maximum number of limit cycles bifurcating from an elementary focus of order $k$ or a limit cycle of multiplicity $k$, or from a period annulus, and on the maximum number of periodic solutions for scalar periodic smooth or piecewise smooth equations as well.  相似文献   

17.
The objective of this paper is to study the number and stability of limit cycles for planar piecewise linear (PWL) systems of node–saddle type with two linear regions. Firstly, we give a thorough analysis of limit cycles for Liénard PWL systems of this type, proving one is the maximum number of limit cycles and obtaining necessary and sufficient conditions for the existence and stability of a unique limit cycle. These conditions can be easily verified directly according to the parameters in the systems, and play an important role in giving birth to two limit cycles for general PWL systems. In this step, the tool of a Bendixon-like theorem is successfully employed to derive the existence of a limit cycle. Secondly, making use of the results gained in the first step, we obtain parameter regions where the general PWL systems have at least one, at least two and no limit cycles respectively. In addition for the general PWL systems, some sufficient conditions are presented for the existence and stability of a unique one and exactly two limit cycles respectively. Finally, some numerical examples are given to illustrate the results and especially to show the existence and stability of two nested limit cycles.  相似文献   

18.
Two problems are approached in this paper. Given a permutation onn elements, which permutations onn elements yield cycle permutation graphs isomorphic to the cycle permutation graph yielded by the given permutation? And, given two cycle permutation graphs, are they isomorphic? Here the author deals only with natural isomorphisms, those isomorphisms which map the outer and inner cycles of one cycle permutation graph to the outer and inner cycles of another cycle permutation graph. A theorem is stated which then allows the construction of the set of permutations which yield cycle permutation graphs isomorphic to a given cycle permutation graph by a natural isomorphism. Another theorem is presented which finds the number of such permutations through the use of groups of symmetry of certain drawings of cycles in the plane. These drawings are also used to determine whether two given cycle permutation graphs are isomorphic by a natural isomorphism. These two methods are then illustrated by using them to solve the first problem, restricted to natural isomorphism, for a certain class of cycle permutation graphs.  相似文献   

19.
To continue the discussion in (Ⅰ ) and ( Ⅱ ),and finish the study of the limit cycle problem for quadratic system ( Ⅲ )m=0 in this paper. Since there is at most one limit cycle that may be created from critical point O by Hopf bifurcation,the number of limit cycles depends on the different situations of separatrix cycle to be formed around O. If it is a homoclinic cycle passing through saddle S1 on 1 +ax-y = 0,which has the same stability with the limit cycle created by Hopf bifurcation,then the uniqueness of limit cycles in such cases can be proved. If it is a homoclinic cycle passing through saddle N on x= 0,which has the different stability from the limit cycle created by Hopf bifurcation,then it will be a case of two limit cycles. For the case when the separatrix cycle is a heteroclinic cycle passing through two saddles at infinity,the discussion of the paper shows that the number of limit cycles will change from one to two depending on the different values of parameters of system.  相似文献   

20.
In this paper we consider a simple family of nonlinear dynamical systems generated by smooth functions. Some theorems for the existence and the uniqueness of the limit cycles of the systems are presented. If f and g are generating functions with unique limit cycles and xf(x) < xg(x), for all x ≠ 0, then according to the ‘bounding theorem’ proved in the paper, the limit cycle of the system generated by f is bounded by the limit cycle of the system generated by g. This gives us a method to estimate the amplitude of the oscillations also for systems for which we do not know the generating function exactly. As an application we extend the nonlinear business cycle model proposed by Tönu Puu (1989).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号