首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using the theory of high-temperature superconductivity based on the idea of the fermion-condensation quantum phase transition (FCQPT), we show that neither the d-wave pairing symmetry, the pseudogap phenomenon, nor the presence of the Cu-O2 planes is of decisive importance for the existence of high-T c superconductivity. We analyze recent experimental data on this type of superconductivity in different materials and show that these facts can be understood within the theory of superconductivity based on the FCQPT. The latter can be considered as a universal cause of high-T c superconductivity. The main features of a room-temperature superconductor are discussed.  相似文献   

2.
Low-field magnetizationM(H) measurements can be used to probe the nature of the screening currents and the interlayer coupling in high-T c cuprates. Here we compare theM(H) behaviour of single crystals of Bi2Sr2CaCu2O8 and fully oxygenated and oxygen reduced YBa2Cu3O7??. In YBa2Cu3O7, theM(H) behaviour is consistent with anisotropic 3D superconductivity whilst in Bi2Sr2CaCu2O8, the surface screening currents are strongly affected by the presence of vortices, implying that the CuO2 planes are coupled via a weak Josephson interaction. In oxygen-deficient YBa2Cu3O6.7 (T c =63K), theM(H) behaviour at low temperatures is similar to that found for Bi2Sr2CaCu2O8, implying that the removal of oxygen from the chains has resulted in a dimensional crossover of the superconducting state in YBa2Cu3O7??. As the temperature approachesT c , the 3D behaviour is eventually restored as thec-axis coherence length ξ c becomes comparable with the interlayer spacingd.  相似文献   

3.
We present new results of analysis of top-quark differential cross sections obtained by the CMS Collaboration in pp collisions in the framework of the z-scaling approach. The spectra are measured over a wide range of collision energy \(\sqrt s = 7,8,13TeV\) and transverse momentum p T = 30?500 GeV/c of top-quark using leptonic and jet decay modes. Flavor independence of the scaling function ψ(z) is verified in the new kinematic range. The results of analysis of the top-quark spectra obtained at the LHC are compared with similar spectra measured in \(\overline p p\) collisions at the Tevatron energy \(\sqrt s = 1.96TeV\). A tendency to saturation of ψ(z) for the process at low z and a power-law behavior of ψ(z) at high z is observed. The measurements of high-p T is observed. The measurements of highspectra of the top-quark production at highest LHC energy is of interest for verification of self-similarity of particle production, understanding flavor origin and search for new physics symmetries with top-quark probe.  相似文献   

4.
Systematic ab initio LDA calculations were performed for all the typical representatives of recently discovered class of iron-based high-temperature superconductors: REOFe(As,P) (RE = La, Ce, Nd, Sm, Tb), Ba2Fe2As, (Sr,Ca)FFeAs, Sr4Sc2O6Fe2P2, LiFeAs and Fe(Se,Te). Non-monotonic behavior of total density of states at the Fermi level is observed as a function of anion height relative to Fe layer with maximum at about Δz a ~ 1.37 Å, attributed to changing Fe-As (P, Se, Te) hybridization. This leads to a similar dependence of superconducting transition temperature T c as observed in the experiments. The fit of this dependence to elementary BCS theory produces semiquantitative agreement with experimental data for T c for the whole class of iron-based superconductors. The similar fit to Allen-Dynes formula underestimates T c in the vicinity of the maximum, signifying the possible importance of non-phonon pairing in this region. These results unambiguously demonstrate that the main effect of T c variation between different types of iron-based superconductors is due to the corresponding variation of the density of states at the Fermi level.  相似文献   

5.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

6.
Experiments on the irradiation-induced suppression of the critical temperature in high-T c superconductors are analyzed within the mean-field Abrikosov-Gor’kov-like approach. It is shown that the experimental data for YBa2Cu3O7-δ single crystals can be quantitatively explained by the pair-breaking effects under the assumption of the combined effect of potential and spin-flip scattering on the critical temperature and with an accounting for a nonpure d-wave superconducting order parameter.  相似文献   

7.
Influence of temperature and magnetic field H on magnetism of spherical Gd nanoparticles of different sizes (89, 63, 47, 28, and 18 nm) was studied in the temperature range 250 K < T < 325 K. The particles were obtained by metal vapor condensation in the flow of helium. The particles with d = 18 nm did not show a magnetic transition; their structure is a combination of two cubic phases (FCC1 and FCC2). Large particles remained in the HCP phase and had an admixture of the FCC1 phase, the amount of which decreased as the particle sizes increased; magnetic transition took place at T c = 293 K. The admixture of O2 did not alter the structure but decreased the magnetization σ and magnetic permeability μ. An orientation transition in polycrystalline gadolinium initiated by the magnetic field H was proved in an experiment. The orientation transition in Gd particles smaller than 63 nm, the magnetic structure of which is close to the single-domain structure, occurred near T c without the influence of H.  相似文献   

8.
It is shown for the first time that the superconducting transition in optimally doped Y- and Bi-based high-T c superconductors is preceded by the Lifshitz topological transition in their electron systems. A intense hole-electron conversion occurring in the system of charge carriers at T = T c + (~10 K) is a clear cut signature of such transition.  相似文献   

9.
Resonant tunneling processes are studied in superconducting junctions of low transparency with the order parameter of the electrodes of different symmetry. A general equation of the resonant current is derived within the Green’s function formalism for the junctions of arbitrary dimensionality. The phase dependence of the supercurrent averaged over the set of localized states is analyzed for superconducting junctions with an isotropic order parameter. A numerical analysis of the resonant current transport in junctions with high-T c superconducting electrodes with the d symmetry of the order parameter was carried out.  相似文献   

10.
In this proceeding, we present our recent work on decay behaviors of the Pc hadronic molecules, which can help to disentangle the nature of the two Pc pentaquark-like structures. The results turn out that the relative ratio of the decays of P c + (4380) to \({\bar D *}{\Lambda _c}\) and Jp is very different for Pc being a \({\bar D *}{\Sigma _c}\) or \(\bar D\Sigma _c *\) bound state with \({J^P} = \frac{{{3 - }}}{2}\) And from the total decay width, we find that Pc(4380) being a \(\bar D\Sigma _c *\) molecule state with \({J^P} = \frac{{{3 - }}}{2}\) and Pc(4450) being a \({\bar D *}{\Sigma _c}\) molecule state with \({J^P} = \frac{{{5 + }}}{2}\) is more favorable to the experimental data.  相似文献   

11.
In the absorption spectra of the hexagonal single-crystal manganite HoMnO3 in the paramagnetic ferroelectric state, lines near 1.1 and 2.0 μm were observed associated with the transitions 5 I 85 I 6 and 5 I 85 I 7, respectively, within the 4f 10 configuration of the Ho3+ ion. At T = 80 K, to the 5 I 85 I 7 transition corresponds one band at 1.9 μm for both polarizations Ec and Ec. As the temperature increases from 80 to 293 K, a low-energy band with a peak at 2.04 μm for Ec and a peak at 2.07 μm for Ec arises associated with transitions from an excited Stark level of the ground 5 I 8 multiplet to the Stark levels of the 5 I 7 multiplet and with an increase in the population of the initial Stark level, the energy of which is ~100 K.  相似文献   

12.
We evaluate some thermodynamic quantities and characteristic ratios that describe low- and high-temperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range T ? Tc are discussed using the method of successive approximations. The equation for the ratio R1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low-Tc superconductors. The prospect of application of the presented model in studies of high-Tc superconductors and other superconducting systems of the new generation is also discussed.  相似文献   

13.
The concept of z scaling reflecting the general features of high-p T particle production is reviewed. Properties of data z presentation are discussed. New data on high-p T particle spectra obtained at the RHIC and Tevatron are analyzed in the framework of z presentation. It was shown that these experimental data confirm z scaling. The change in the anomalous fractal dimensions of colliding objects (“δ jump”) is considered as a signature of new physics. The kinematic ranges preferable for searching for z-scaling violation are established.  相似文献   

14.
Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A 1g s-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high-T c superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high-T c superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: superconductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high-T c superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high-T c superconductivity.  相似文献   

15.
Ferromagnetism and ferroelectricity in Eu monochalcogenides have been investigated by ab initio density functional theory in the DFT+U approach. Exchange interaction parameters and Curie temperatures under pressure are studied and discussed using Heisenberg Hamiltonian with first and second-nearest-neighbor interactions. The calculations showed that the hydrostatic pressure perfectly improves the Curie temperature (EuO: T C = 175 K; EuS: T C = 33.8 K) and in the other hand it cannot induce the spontaneous polarization (P s ). The effect of uniaxial and biaxial pressure is also studied. Although the uniaxial strains slightly increases the Curie temperature, it ensures the ferrolectricity in these systems by producing a spontaneous polarization of the order of P s (EuO) = 57.50 μC/cm2 and P s (EuS) = 42.86 μC/cm2 with pressures of 5% and 4%, respectively. The search for new model systems is a necessity to better understand the physics related to multiferroïc materials and to consider possible applications.  相似文献   

16.
On the basis of the k T -factorization approach, heavy-quarkonium \((c\bar c,b\bar b)\) hadroproduction at high energies is considered within nonrelativistic QCD in the leading order in α s and v. The p T spectra of various S-and P-wave quarkonium states at the Tevatron collider energies (run I and run II) are fitted, and sets of octet nonperturbative matrix elements are obtained for three different versions of the noncollinear gluon distribution in the proton.  相似文献   

17.
The energies of formation of vacancies in the carbon and silicon sublattices, the independent elastic constants, the all-round compression, shear and Young’s moduli, and the anisotropy coefficients are determined for the complete and nonstoichiometric cubic phases of 3C-SixCy (x, y = 1.0–0.75) by ab initio methods of the band theory. In the formalism of the density functional perturbation theory (DFPT), the phonon dispersion dependences are obtained for these phases (the comparison with the experiment is given for the complete phase). It is shown that the mechanical characteristics of the phases become strongly anisotropic upon the transition from 3C-SiC0.875 to 3C-SiC0.75. It is established from the analysis of the phonon dispersion curves that the 3C-SiC0.875 and 3C-SiC0.75 phases, in contrast to the complete 3C-SiC phase, are dynamically unstable at T = 0 K.  相似文献   

18.
The critical current I c of S-(FN)-S Josephson structures has been calculated as a function of the distance L between superconducting (S) electrodes using the Usadel quasiclassical equations for the case of specifying the supercurrent in the direction parallel to the interface between the ferromagnetic (F) and normal (N) films of the composite weak-link region. It has been shown that, owing to the interaction between F and N films, both the typical decrease scale I c(L) and the period of the critical current oscillations can be much larger than the respective quantities for the SFS junctions. The conditions have been determined under which these lengths are on the order of the effective depth ζN of superconductivity penetration to a normal metal.  相似文献   

19.
This paper contains the study of spherically symmetric perfect fluid collapse in the frame work of f(R, T) modified theory of gravity. We proceed our work by considering the non-static spherically symmetric background in the interior and static spherically symmetric background in the exterior regions of the star. The junction conditions between exterior and interior regions are presented by matching the exterior and interior regions. The field equations are solved by taking the assumptions that the Ricci scalar as well as the trace of energy-momentum tensor are to be constant, for a particular f(R, T) model. By inserting the solution of the field equations in junction conditions, we evaluate the gravitational mass of the collapsing system. Also, we discuss the apparent horizons and their time formation for different possible cases. It is concluded that the term f(R 0, T 0) behaves as a source of repulsive force and that’s why it slowdowns the collapse of the matter.  相似文献   

20.
O. P. Yushchenko  V. F. Kurshetsov  A. P. Filin  S. A. Akimenko  A. V. Artamonov  A. M. Blik  V. V. Brekhovskikh  V. S. Burtovoy  S. V. Donskov  A. V. Inyakin  A. M. Gorin  G. V. Khaustov  S. A. Kholodenko  V. N. Kolosov  A. S. Konstantinov  V. M. Leontiev  V. A. Lishin  M. V. Medynsky  Yu. V. Mikhailov  V. F. Obraztsov  V. A. Polyakov  A. V. Popov  V. I. Romanovsky  V. I. Rykalin  A. S. Sadovsky  V. D. Samoilenko  V. K. Semenov  O. V. Stenyakin  O. G. Tchikilev  V. A. Uvarov  V. A. Duk  S. N. Filippov  E. N. Guschin  Yu. G. Kudenko  A. A. Khudyakov  V. I. Kravtsov  A. Yu. Polyarush  V. N. Bychkov  G. D. Kekelidze  V. M. Lysan  B. Zh. Zalikhanov 《JETP Letters》2018,107(3):139-142
Recent results from OKA setup concerning form factor studies in Ke3 decay are presented. About 5.25 M events obtained for decays of 17.7 GeV/cK+ are selected for the analysis. The linear and quadratic slopes for the decay form factor f+(t) are measured: λ'+ = 2.95 ± 0.022 ± 0.018 × 10 -2 for the linear slope fit and λ+ = 2.611 ± 0.035 ± 0.028 × 10 -2, λ"+ = 1.91 ± 0.19 ± 0.14 × 10 -3 for the quadratic one. The scalar and tensor contributions are compatible with zero. Several alternative parametrizations are tried: the Pole fit parameter is found to be M V = 891 ± 3 MeV; the parameter of the dispersive parametrization is measured to be Λ+ = 2.458 ± 0.018 × 10-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号