首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comprehensive two‐dimensional gas chromatography and flame ionization detection combined with unfolded‐partial least squares is proposed as a simple, fast and reliable method to assess the quality of gasoline and to detect its potential adulterants. The data for the calibration set are first baseline corrected using a two‐dimensional asymmetric least squares algorithm. The number of significant partial least squares components to build the model is determined using the minimum value of root‐mean square error of leave‐one out cross validation, which was 4. In this regard, blends of gasoline with kerosene, white spirit and paint thinner as frequently used adulterants are used to make calibration samples. Appropriate statistical parameters of regression coefficient of 0.996–0.998, root‐mean square error of prediction of 0.005–0.010 and relative error of prediction of 1.54–3.82% for the calibration set show the reliability of the developed method. In addition, the developed method is externally validated with three samples in validation set (with a relative error of prediction below 10.0%). Finally, to test the applicability of the proposed strategy for the analysis of real samples, five real gasoline samples collected from gas stations are used for this purpose and the gasoline proportions were in range of 70–85%. Also, the relative standard deviations were below 8.5% for different samples in the prediction set.  相似文献   

2.
Automotive fuel adulteration is an old and significant problem. One common type of fuel adulteration is the addition of diesel to gasoline. Unsupervised models were developed through hierarchical cluster and principal component analysis models. Supervised models through partial least square discriminant analysis using 1H nuclear magnetic resonance spectra as the input were used to classify samples as adulterated or unadulterated. Quantitative models were developed using partial least squares to determine the gasoline and diesel concentrations in the samples. This set contained samples composed of pure gasoline and anhydrous ethanol reproducing commercial gasoline and other samples treated with diesel. Hierarchical cluster and principal component analysis did not distinguish between adulterated and unadulterated samples except for the most adulterated materials. However, partial least square discriminant analysis classified 100% of the samples correctly. The partial least square algorithm provided excellent regression models for the gasoline and diesel content. The determination coefficient was 0.9920 for both models, whereas the root mean square error of cross-validation and root mean square error of prediction for the diesel model were 2.32 and 1.42%, respectively, and 2.40 and 1.38% for the gasoline model.  相似文献   

3.
A total of 2400 samples of commercial Brazilian C gasoline were collected over a 6-month period from different gas stations in the S?o Paulo state, Brazil, and analysed with respect to 12 physicochemical parameters according to regulation 309 of the Brazilian Government Petroleum, Natural Gas and Biofuels Agency (ANP). The percentages (v/v) of hydrocarbons (olefins, aromatics and saturated) were also determined. Hierarchical cluster analysis (HCA) was employed to select 150 representative samples that exhibited least similarity on the basis of their physicochemical parameters and hydrocarbon compositions. The chromatographic profiles of the selected samples were measured by gas chromatography with flame ionisation detection and analysed using soft independent modelling of class analogy (SIMCA) method in order to create a classification scheme to identify conform gasolines according to ANP 309 regulation. Following the optimisation of the SIMCA algorithm, it was possible to classify correctly 96% of the commercial gasoline samples present in the training set of 100. In order to check the quality of the model, an external group of 50 gasoline samples (the prediction set) were analysed and the developed SIMCA model classified 94% of these correctly. The developed chemometric method is recommended for screening commercial gasoline quality and detection of potential adulteration.  相似文献   

4.
In this present research, a spectroscopic method based on UV–Vis spectroscopy is utilized to quantify the level of corn adulteration in peaberry ground roasted coffee by chemometrics. Peaberry coffee with two types of bean processing of wet and dry-processed methods was used and intentionally adulterated by corn with a 10–50% level of adulteration. UV–Vis spectral data are obtained for aqueous samples in the range between 250 and 400 nm with a 1 nm interval. Three multivariate regression methods, including partial least squares regression (PLSR), multiple linear regression (MLR), and principal component regression (PCR), are used to predict the level of corn adulteration. The result shows that all individual regression models using individual wet and dry samples are better than that of global regression models using combined wet and dry samples. The best calibration model for individual wet and dry and combined samples is obtained for the PLSR model with a coefficient of determination in the range of 0.83–0.93 and RMSE below 6% (w/w) for calibration and validation. However, the error prediction in terms of RMSEP and bias were highly increased when the individual regression model was used to predict the level of corn adulteration with differences in the bean processing method. The obtained results demonstrate that the use of the global PLSR model is better in predicting the level of corn adulteration. The error prediction for this global model is acceptable with low RMSEP and bias for both individual and combined prediction samples. The obtained RPDp and RERp in prediction for the global PLSR model are more than two and five for individual and combined samples, respectively. The proposed method using UV–Vis spectroscopy with a global PLSR model can be applied to quantify the level of corn adulteration in peaberry ground roasted coffee with different bean processing methods.  相似文献   

5.
The amounts of drug and excipient were predicted from ATR-FTIR spectra using two multi-way modelling techniques, parallel factor analysis (PARAFAC) and multi-linear partial least squares (N-PLS). Data matrices consisted of dissolved and undissolved parallel samples having different drug content and spectra, which were collected at axially cut surface of the flat-faced matrix tablets. Spectra were recorded comprehensively at different points on the axially cut surface of the tablet. The sample drug concentrations varied between 2 and 16% v/v. The multi-way methods together with ATR-FTIR spectra seemed to represent an applicable method for the determination of drug and excipient distribution in a tablet during the release process. The N-PLS calibration method was more robust for accurate quantification of the amount of components in the sample whereas the PARAFAC model provided approximate relative amounts of components.  相似文献   

6.
Near infrared (NIR) spectroscopy was employed for simultaneous determination of methanol and ethanol contents in gasoline. Spectra were collected in the range from 714 to 2500 nm and were used to construct quantitative models based on partial least squares (PLS) regression. Samples were prepared in the laboratory and the PLS regression models were developed using the spectral range from 1105 to 1682 nm, showing a root mean square error of prediction (RMSEP) of 0.28% (v/v) for ethanol for both PLS-1 and PLS-2 models and of 0.31 and 0.32% (v/v) for methanol for the PLS-1 and PLS-2 models, respectively. A RMSEP of 0.83% (v/v) was obtained for commercial samples. The effect of the gasoline composition was investigated, it being verified that some solvents, such as toluene and o-xylene, interfere in ethanol content prediction, while isooctane, o-xylene, m-xylene and p-xylene interfere in the methanol content prediction. Other spectral ranges were investigated and the range 1449-1611 nm showed the best results.  相似文献   

7.
Broad NW  Jee RD  Moffat AC  Eaves MJ  Mann WC  Dziki W 《The Analyst》2000,125(11):2054-2058
Fourier transform near-infrared (FT-NIR) spectroscopy was used to quantify rapidly the ethanol (34-49% v/v), propylene glycol (20-35% v/v) and water (11-20% m/m) contents within a multi-component pharmaceutical oral liquid by measurement directly through the amber plastic bottle packaging. Spectra were collected in the range 7302-12,000 cm-1 and calibration models set-up using partial least-squares regression (PLSR) and multiple linear regression. Reference values for the three components were measured using capillary gas chromatography (ethanol and propylene glycol) and Karl Fischer (water) assay procedures. The calibration and test sets consisted of production as well as laboratory batches that were made to extend the concentration ranges beyond the natural production variation. The PLSR models developed gave standard errors of prediction (SEP) of 1.1% v/v for ethanol, 0.9% v/v for propylene glycol and 0.3% m/m for water. For each component the calibration model was validated in terms of: linearity, repeatability, intermediate precision and robustness. All the methods produced statistically favourable outcomes. Ten production batches independent of the calibration and test sets were also challenged against the PLSR models, giving SEP values of 1.3% v/v (ethanol), 1.0% v/v (propylene glycol) and 0.2% m/m (water). NIR transmission spectroscopy allowed all three liquid constituents to be non-invasively measured in under 1 min.  相似文献   

8.
The estimation of physicochemical parameters such as distillation points and relative densities still plays an important role in the quality control of gasoline and similar fuels. Their measurements according to standard ASTM procedures demands specific equipments and are time and work consuming. An alternative method to predict distillation points and relativity density by multivariate analysis of comprehensive two-dimensional gas chromatography with flame ionization detection (GC×GC-FID) data is presented here. Gasoline samples, previously tested according to standard methods, were used to build regression models, which were evaluated by external validation. The models for distillation points were built using variable selection methods, while the model for relativity density was built using the whole chromatograms. The root mean square prediction differences (RMSPD) obtained were 0.85%, 0.48%, 1.07% and 1.71% for 10, 50 and 90% v/v of distillation and for the final point of distillation, respectively. For relative density, the RMSPD was 0.24%. These results suggest that GC×GC-FID combined with multivariate analysis can be used to predict these physicochemical properties of gasoline.  相似文献   

9.
Benzene, toluene, ethylbenzene, and xylenes are some of the most hazardous constituents found in commercial gasoline samples; therefore, these components must be monitored to avoid toxicological problems. We propose a new routine method of ultrafast gas chromatography coupled to flame ionization detection for the direct determination of benzene, toluene, ethylbenzene, and xylenes in commercial gasoline. This method is based on external standard calibration to quantify each compound, including the validation step of the study of linearity, detection and quantification limits, precision, and accuracy. The time of analysis was less than 3.2 min, with quantitative statements regarding the separation and quantification of all compounds in commercial gasoline samples. Ultrafast gas chromatography is a promising alternative method to official analytical techniques. Government laboratories could consider using this method for quality control.  相似文献   

10.
A rapid Raman spectroscopy protocol is reported to classify gasoline according to its distributor and to identify and quantify common adulterants. Gasoline from three distributors was collected from 19 stations in São Paulo, Brazil. Principal component analysis (PCA) showed specific clusters for each distributor, and partial least squares discriminant analysis (PLS-DA) correctly identified the origin of the samples. To evaluate the technique for the identification and quantification of the adulterants, authentic samples from each distributor were fortified at levels from 2.5 up to 25.0% (v/v) using ethanol, methanol, toluene, and turpentine to obtain 120 altered samples. PCA showed clear separation among the samples with the adulterants and PLS-DA precisely identified the adulterants (478 in 480 predictions by cross-validation), irrespective of the distributor and the concentration. One classification model was used to characterize all distributors. To quantify the adulterants, 36 multivariate calibration models were constructed using partial least squares (PLS), interval PLS, and PLS genetic algorithm for each distributor and for each adulterant. Cross-validation errors of less than 5.0% were obtained for all adulterants regardless of the distributor. Raman spectroscopy and multivariate analysis were shown to be powerful for rapid and inexpensive for the characterization of gasoline origin and the identification and quantification of common adulterants.  相似文献   

11.
Fourier transform-near infrared (FT-NIR) and FT-Raman spectrometries have been used to design partial least squares (PLS) calibration models for the determination of the ethanol content of ethanol fuel and alcoholic beverages. In the FT-NIR measurements the spectra were obtained using air as reference, and the spectral region for PLS modeling were selected based on the spectral distribution of the relative standard deviation in concentration. In the FT-Raman measurements hexachloro-1,3-butadiene (HCBD) has been used as an external standard. In the PLS/FT-NIR modeling for ethanol fuel analysis 50 ethanol fuel standards (84.9-100% (w/w)) were used (25 in the calibration, 25 in the validation). In the PLS/FT-Raman modeling 25 standards were used (13 in the calibration, 12 in the validation). The PLS/FT-NIR and FT-Raman models for beverage analysis made use of 24 standards (0-100% (v/v)). Twelve of them contained sugars (1-5% (w/w)), one-half was used in the calibration and the other half in the validation. Different spectral pre-processing were used in the PLS modeling, depending on the type of sample investigated. In the ethanol fuel analysis the FT-NIR pre-processing was a 17 points smoothed first derivative and for beverages no spectral pre-processing was used. The FT-Raman spectra were pre-processed by vector normalization in the ethanol fuel analysis and by a second derivative (17 points smoothing) in the beverage analysis. The PLS models were used in the analysis of real ethanol fuel and beverage samples. A t-test has shown that the FT-NIR model has an accuracy equivalent to that of the reference method (ASTM D4052) in the analysis of ethanol fuel, while in the analysis of beverages, the FT-Raman model presents an accuracy equivalent to the reference method. The limits of detection for NIR and Raman calibration models were 0.05 and 0.2% (w/w), respectively. It has also been shown that both techniques, present better results than gas chromatography (GC) in evaluating the ethanol content of beverages.  相似文献   

12.
The identification of gasoline adulteration by organic solvents is not an easy task, because compounds that constitute the solvents are already in gasoline composition. In this work, the combination of Hydrogen Nuclear Magnetic Resonance (1H NMR) spectroscopic fingerprintings with pattern-recognition multivariate Soft Independent Modeling of Class Analogy (SIMCA) chemometric analysis provides an original and alternative approach to screening Brazilian commercial gasoline quality in a Monitoring Program for Quality Control of Automotive Fuels. SIMCA was performed on spectroscopic fingerprints to classify the quality of representative commercial gasoline samples selected by Hierarchical Cluster Analysis (HCA) and collected over a 6-month period from different gas stations in the São Paulo state, Brazil. Following optimized the 1H NMR-SIMCA algorithm, it was possible to correctly classify 92.0% of commercial gasoline samples, which is considered acceptable. The chemometric method is recommended for routine applications in Quality-Control Monitoring Programs, since its measurements are fast and can be easily automated. Also, police laboratories could employ this method for rapid screening analysis to discourage adulteration practices.  相似文献   

13.
An analytical method for the sequential detection, identification and quantitation of extra virgin olive oil adulteration with four edible vegetable oils--sunflower, corn, peanut and coconut oils--is proposed. The only data required for this method are the results obtained from an analysis of the lipid fraction by gas chromatography-mass spectrometry. A total number of 566 samples (pure oils and samples of adulterated olive oil) were used to develop the chemometric models, which were designed to accomplish, step-by-step, the three aims of the method: to detect whether an olive oil sample is adulterated, to identify the type of adulterant used in the fraud, and to determine how much aldulterant is in the sample. Qualitative analysis was carried out via two chemometric approaches--soft independent modelling of class analogy (SIMCA) and K nearest neighbours (KNN)--both approaches exhibited prediction abilities that were always higher than 91% for adulterant detection and 88% for type of adulterant identification. Quantitative analysis was based on partial least squares regression (PLSR), which yielded R2 values of >0.90 for calibration and validation sets and thus made it possible to determine adulteration with excellent precision according to the Shenk criteria.  相似文献   

14.
Walmsley AD  Loades VC 《The Analyst》2001,126(4):417-420
The feasibility of using guided microwave spectroscopy (GMS) utilizing the frequency range 0.25-3.20 GHz, was combined with multivariate calibration for the determination of acetonitrile or ethanol concentration in water. A wide range of different concentrations was used (up to 30% v/v). Partial least squares (PLS) and weighted ridge regression (WRR) was applied to generate a model for prediction, based upon the microwave spectra. A high level of collinearity was observed in both of the sample data sets and this was reduced by background subtraction. The prediction ability for the two types of regression models were found to be comparable with the percentage error of prediction (PEP) being approximately 2.5% for the acetonitrile samples and 1.1% for ethanol samples.  相似文献   

15.
The paper reports a direct method for the determination of pyridine in water and wastewater samples based on ultraviolet spectrophotometric measurements using multi-way modeling techniques. Parallel factor analysis (PARAFAC) and multi-way partial least squares (N-PLS) regression methods were employed for the decomposition of spectra and quantification of pyridine. The study was carried out in the pH range of 1.0-12.0 and concentration range of 0.67-51.7 μg mL−1 of pyridine. Both the three-way PARAFAC and tri-PLS1 models successfully predicted the concentration of pyridine in synthetic (spiked) river water and field wastewater samples. The mean recovery obtained from PARAFAC regression model were 97.39% for the spiked and 99.84% for the field wastewater samples, respectively. The sensitivity and precision of the method for pyridine determination were 0.58% and 5.95%, respectively. The N-PLS regression model yielded mean recoveries of 99.29% and 100.18% for the spiked and field wastewater samples, respectively. The prediction accuracy of the methods was evaluated through the root mean square error of prediction (RMSEP). For PARAFAC, it was 0.65 and 0.82 μg mL−1 for spiked river water and field wastewater samples, respectively, while for N-PLS, it was 0.25 and 0.37 μg mL−1, respectively. Both the PARAFAC and N-PLS methods, thus, yielded satisfactory results for the prediction of pyridine concentration in water and wastewater samples.  相似文献   

16.
ASTM D6729 gas chromatographic fingerprinting coupled to pattern-recognition multivariate soft independent modeling of class analogy (SIMCA) chemometric analysis provides an original and alternative approach to screening Brazilian commercial gasoline quality. SIMCA, was performed on gas chromatographic fingerprints to classify the quality of representative commercial gasoline samples selected by hierarchical cluster analysis and collected over a 5 month period from gas stations in São Paulo State, Brazil. Following an optimized ASTM D6729 gas chromatographic-SIMCA algorithm, it was possible to correctly classify the majority of commercial gasoline samples. The method could be employed for rapid monitoring to discourage adulteration.  相似文献   

17.
Lanthanide-sensitized luminescence excitation-time decay matrices were employed for achieving the second-order advantage using as chemometric algorithms parallel factor analysis (PARAFAC) and multidimensional partial least-squares with residual bilinearization (N-PLS/RBL). The second-order data were measured for a calibration set of samples containing the analyte benzoic acid in the concentration range from 0.00 to 5.00 mg L−1, for a validation set containing the analyte and the potential interferent saccharin (in the range 0.00–6.00 mg L−1), and for real samples of beverages containing benzoic acid as preservant, saccharin, and other potentially interfering compounds. All samples were treated with terbium(III), trioctylphosphine oxide as a synergistic ligand, and contained a suitable imidazol buffer, in order to ensure maximum intensity of the luminescence signals. The results indicate a slightly better predictive ability of the newly introduced N-PLS/RBL procedure over standard PARAFAC, both in what concerns the comparison with nominal analyte concentrations in the validation sample set and with results provided by the reference high-performance liquid chromatographic technique for the real sample set.  相似文献   

18.
A voltammetric method for the determination of Cu(II) and Pb(II) in gasoline using sample preparation as three-component solutions (gasoline:propan-1-ol:water, 25:60:15 v/v/v) is proposed. HNO(3) was employed as a supporting electrolyte and to allow the use of aqueous inorganic standards for calibration, even if the analyte species originally in gasoline is present as a metallo-organic form. A square-wave anodic sequential determination was used by measuring the stripping current of Cu(II) (at +104 mV) using a glassy carbon electrode (GCE) and, in a second run, measuring the Pb(II) stripping current (at -470 mV) using a bismuth-film deposited on the surface of the GCE. The method allowed the quantification of 1.7 x 10(-9) mol L(-1) of Cu and 1.4 x 10(-10) mol L(-1) of Pb employing a 1500-s accumulation time. Recovery tests using analyte spiked three-component solutions prepared with commercial gasoline samples enabled recoveries of Cu and Pb from 97 +/- 8 to 102 +/- 5%.  相似文献   

19.
In this work it has been shown that the routine ASTM methods (ASTM 4052, ASTM D 445, ASTM D 4737, ASTM D 93, and ASTM D 86) recommended by the ANP (the Brazilian National Agency for Petroleum, Natural Gas and Biofuels) to determine the quality of diesel/biodiesel blends are not suitable to prevent the adulteration of B2 or B5 blends with vegetable oils. Considering the previous and actual problems with fuel adulterations in Brazil, we have investigated the application of vibrational spectroscopy (Fourier transform (FT) near infrared spectrometry and FT-Raman) to identify adulterations of B2 and B5 blends with vegetable oils. Partial least square regression (PLS), principal component regression (PCR), and artificial neural network (ANN) calibration models were designed and their relative performances were evaluated by external validation using the F-test. The PCR, PLS, and ANN calibration models based on the Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy were designed using 120 samples. Other 62 samples were used in the validation and external validation, for a total of 182 samples. The results have shown that among the designed calibration models, the ANN/FT-Raman presented the best accuracy (0.028%, w/w) for samples used in the external validation.  相似文献   

20.
The determination of folic acid and its two main serum metabolites, 5-methyltetrahydrofolic acid and tetrahydrofolic acid, has been accomplished using four-way data modelled by the third-order multivariate calibration methods unfolded and N-dimensional partial least-squares (U-PLS and N-PLS), in combination with the separate procedure known as residual trilinearization (RTL). The four-way data were acquired by following the photochemical reaction of these compounds by on line irradiation with a UV lamp. The excitation-emission matrices (EEMs) were recorded as a function of the irradiation time, using a fast scanning spectrofluorimeter. The method achieves selectivity from the different rates at which the corresponding photoproducts of the folic acid derivatives are formed and degraded. Several N-dimensional chemometric algorithms were used and the method was applied to the determination of these compounds in serum samples. The best algorithms to perform the multivariate calibration were U-PLS and N-PLS in combination with the separate residual trilinearization procedure, achieving the second-order advantage. The approach allows minimizing or eliminating traditionally time-consuming sample pre-treatments and can facilitate quantifying an analyte in its native environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号