首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used transmission ellipsometry to measure the glass transition temperature, Tg, of freely-standing films of atactic and syndiotactic poly(methyl methacrylate) (PMMA). We have prepared films with different molecular weights, MW, (159×103 < M w < 1.3×106) and film thicknesses, h, ( 30nm < h < 200 nm). For the high-MW ( M w > 509×103) atactic PMMA films, we find that Tg decreases linearly with decreasing h, which is qualitatively similar to previous results obtained for high-MW freely-standing polystyrene (PS) films. However, the overall magnitude of the Tg reduction is much less (by roughly a factor of three) for the high-MW freely-standing PMMA films than for freely-standing PS films of comparable MW and h. The observed differences between the freely-standing PMMA and PS film data suggest that differences in chemical structure determine the magnitude of the Tg reduction and we discuss the possible origins of these differences. Our analysis of the MW-dependence of the Tg reductions suggests that the mechanism responsible for the MW-dependent Tg reductions observed in the high-MW freely-standing films is different than that responsible for the MW-independent Tg reductions observed in the low-MW freely-standing and supported films.  相似文献   

2.
Miscibility in blends of polystyrene and poly(phenylene oxide) (PS/PPO) confined in thin films (down to 6 nm) was investigated using a recently developed sensitive differential alternating current (AC) chip calorimeter. Comparison of composition dependence of glass transition in thin films with common models should provide information on miscibility. This study focuses on the blend system polystyrene and poly(phenylene oxide) (PS/PPO) because it is thought as a miscible model system in the whole composition range. Furthermore, its local dynamic heterogeneity is already identified by dynamic mechanic thermal analysis (DMTA) and solid state NMR techniques. For this blend, we find that even for the thinnest films (6 nm, corresponding to about half of PPO’s radius of gyration R g) only one glass transition is observed. The composition dependence of T g is well described by the Fox, Couchman or Gordon-Taylor mixing law that are used for the miscible bulk blends. Although there is a contradicting result on whether T g decreases with decreasing film thickness between our calorimetric measurements and Kim’s elipsometric measurements on the same blend (Kim et al. Macromolecules 2002, 35, 311–313), the conclusion that the good miscibility between PS and PPO remains in ultrathin films holds for both studies. Finally, we show that our chip calorimeter is also sensitive enough to study the inter-layer diffusion in ultrathin films. PS chain in a thin PS/PPO double layer that is prepared by spin coating PPO and PS thin film in tandem will gradually diffuse into the PPO layer when heated above T g of PS, forming a PSxPPO100−x blend. However, above the PSxPPO100−x blend, there exists an intractable pure PS like layer (∼30  nm in our case) that does not diffuse into the blend beneath even staying at its liquid state over 10 hours.  相似文献   

3.
Fluorescence intensity measurements of chromophore-doped or -labeled polymers have been used for the first time to determine the effects of decreasing film thickness on glass transition temperature, T g, the relative strength of the glass transition, and the relative rate of physical aging below T g in supported, ultrathin polymer films. The temperature dependence of fluorescence intensity measured in the glassy state of thin and ultrathin films of pyrene-doped polystyrene (PS), poly(isobutyl methacrylate) (PiBMA), and poly(2-vinylpyridine) (P2VP) differs from that in the rubbery state with a transition at T g. Positive deviations from bulk T g are observed in ultrathin PiBMA and P2VP films on silica substrates while substantial negative deviations from bulk T g are observed in ultrathin PS films on silica substrates. The relative difference in the temperature dependences of fluorescence intensity in the rubbery and glassy states is usually reduced with decreasing film thickness, indicating that the strength of the glass transition is reduced in thinner films. The temperature dependence of fluorescence intensity also provides useful information on effects of processing history as well as on the degree of polymer-substrate interaction. In addition, when used as a polymer label, a mobility-sensitive rotor chromophore is demonstrated to be useful in measuring relative rates of physical aging in films as thin as 10 nm. Received 21 August 2001  相似文献   

4.
We present a comprehensive study of gold nanoparticle embedding into polystyrene (PS) surfaces at temperatures ranging from T g + 8 K to T g − 83 K and times as long as 105 minutes. This range in times and temperatures allows the first concurrent observation of and differentiation between surface and bulk behavior in the 20nm region nearest the free surface of the polymer film. Of particular importance is the temperature region near the bulk glass transition temperature where both surface and bulk processes can be measured. The results indicate that for the case of PS, enhanced surface mobility only exists at temperatures near or below the bulk T g value. The surface relaxation times are only weakly temperature dependent and near T g , the enhanced mobility extends less than 10nm into the bulk of the film. The results suggest that both the concept of a “surface glass transition” and the use of glass transition temperatures to measure local mobility near interfaces may not universally apply to all polymers. The results can also be used to make a quantitative connection to molecular dynamics simulations of polymer films and surfaces.  相似文献   

5.
The glass transition temperature and the dynamics of the α-process have been investigated using dielectric relaxation spectroscopy for single and stacked thin films of poly(2-chlorostyrene) (P2CS). The stacked film consists of 10 layers of single thin films with thickness of 12 nm or 18 nm. The glass transition temperature T g of the single thin films of P2CS is found to decrease with decreasing film thickness in a similar way as observed for polystyrene thin films. The magnitude of the depression of T g for the stacked thin films is larger than that of the single thin films with corresponding thickness. The depression of the temperature at which the dielectric loss shows a peak due to the α-process at a given frequency, T α, is larger than that of the single thin films, although the magnitude is smaller than that of T g . Annealing at a high temperature could cause the T g and T α of the stacked thin films to approach the values of the bulk system.  相似文献   

6.
The molecular dynamics in thin films (18 nm-137 nm) of isotactic poly(methyl methacrylate) (i-PMMA) of two molecular weights embedded between aluminium electrodes are measured by means of dielectric spectroscopy in the frequency range from 50 mHz to 10 MHz at temperatures between 273 K and 392 K. The observed dynamics is characterized by two relaxation processes: the dynamic glass transition (α-relaxation) and a (local) secondary β-relaxation. While the latter does not depend on the dimensions of the sample, the dynamic glass transition becomes faster (≤2 decades) with decreasing film thickness. This results in a shift of the glass transition temperature T g to lower values compared to the bulk. With decreasing film thickness a broadening of the relaxation time distribution and a decrease of the dielectric strength is observed for the α-relaxation. This enables to deduce a model based on immobilized boundary layers and on a region displaying a dynamics faster than in the bulk. Additionally, T g was determined by temperature-dependent ellipsometric measurements of the thickness of films prepared on silica. These measurements yield a gradual increase of T g with decreasing film thickness. The findings concerning the different thickness dependences of T g are explained by changes of the interaction between the polymer and the substrates. A quantitative analysis of the T g shifts incorporates recently developed models to describe the glass transition in thin polymer films. Received 12 August 2001 and Received in final form 16 November 2001  相似文献   

7.
Using ellipsometry, we characterized the nanoconfinement effect on the glass transition temperature (T gof supported polystyrene (PS) films employing two methods: the intersection of fits to the temperature (Tdependences of rubbery- and glassy-state thicknesses, and the transition mid-point between rubbery- and glassy-state expansivities. The results demonstrate a strong effect of thickness: Tg(bulk)-Tg(23 nm) = 10 °\ensuremath T_{{\rm g}}({\rm bulk})-T_{{\rm g}}(23{\,\mbox{nm}})= 10 ^{\circ} C. The T -range needed for accurate measurement increases significantly with decreasing thickness, an effect that arises from the broadening of the transition with confinement and a region below T g where expansivity slowly decreases with decreasing T . As determined from expansivities, the T g breadth triples in going from bulk films to a 21-nm-thick film; this broadening of the transition may be a more dramatic effect of confinement than the T g reduction itself. In contrast, there is little effect of confinement on the rubbery- and glassy-state expansivities. Compared with ellipsometry, T g ’s from fluorescence agree well in bulk films but yield lower values in nanoconfined films: T g(bulk) - T g(23 nm) = 15° C via fluorescence. This small difference in the T g confinement effect reflects differences in how fluorescence and ellipsometry report “average T g ” with confinement. With decreasing nanoscale thickness, fluorescence may slightly overweight the contribution of the free-surface layer while ellipsometry may evenly weight or underweight its contribution.  相似文献   

8.
The T g of organic liquids confined to nanoporous matrices and that of thin polymer films can decrease dramatically from the bulk value. One possible explanation for this phenomenon is the development of hydrostatic tension during vitrification under confinement that results in a concomitant increase in the free volume. Here we present experimental evidence and modeling results for ortho-terphenyl (o-TP) confined in pores as small as 11.6 nm that indicate that, although there is an important hydrostatic tension in the liquid in the pores, it does not develop until near the reduced T g of the constrained material --well below the bulk T g. Enthalpy recovery for the o-TP in the nanopores exhibits accelerated physical aging relative to the bulk, as well as a leveling off of the fictive temperature at equilibrium values greater than the aging temperature. An adaptation of the structural recovery model that incorporates vitrification under isochoric conditions is able to provide a quantitative explanation for the apparently anomalous aging observed in nanopore confined liquids and in thin polymeric films. The results strongly support the existence of an intrinsic size effect as the cause of the reduced T g. Received 3 September 2001  相似文献   

9.
Pulsed laser deposition (PLD) at 248 nm in ultra high vacuum was used to produce thin poly(methyl methacrylate) (PMMA) and poly(ethyl methacrylate) (PEMA) films. The ablation and deposition mechanisms were found to be similar in both systems. Having the same backbone, these polymers differ in the size of their polar side groups leading to changes in their dynamics. Studies of the relaxation processes were performed using mechanical torsion and bending spectroscopy by means of a double-paddle oscillator (DPO) and an in-situ plasma plume excited reed (PPXR), respectively. A strong increase of the mechanical damping was observed during annealing of the polymer films well above the glass transition temperature T g, while in-situ X-ray measurements did not reveal any structural changes. For PEMA, the glass transition temperature T g=335 K and the main absorption maximum appear at lower temperatures compared to PMMA (T g=380 K), allowing one to measure the mechanical properties in a much wider range above T g.  相似文献   

10.
We present a 532‐nm excited Raman imaging study of pentacene thin films (thickness, 2, 5, 10, 20, 50, 100, and 150 nm) prepared on an SiO2 surface. The structure of the pentacene films has been investigated by images and histograms of the ratio (R) of intensity of the 1596‐cm−1 band (b3g) to that of the 1533‐cm−1 band (ag), which can be used as a marker of solid‐state phases: 1.54‐nm and 1.44‐nm phases. The Raman images showed that island‐like 1.44‐nm phase domains are grown on the 1.54‐nm phase layer from 50 nm, and all the surface of the 1.54‐nm phase layer is covered with the 1.44‐nm phase layer from 100 nm. The structural disorders have been discussed on the basis of the full width at half maximum of a band in the histogram of the R values for each film. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Thin films of eight metals with a thickness of 150 nm were deposited on mica substrates by thermal evaporation at various temperatures in a high vacuum. The surface morphology of the metal films was observed by atomic force microscopy (AFM) and the images were characterized quantitatively by a roughness analysis and a bearing analysis (surface height analysis). The films of Au, Ag, Cu, and Al with the high melting points were prepared at homologous temperatures T/Tm = 0.22-0.32, 0.40, and 0.56. The films of In, Sn, Bi, and Pb with the low melting points were prepared at T/Tm = 0.55-0.70, where T and Tm are the absolute temperatures of the mica substrate and the melting point of the metal, respectively. The surface morphology of these metal films was studied based on a structure zone model. The film surfaces of Au, Ag, and Cu prepared at the low temperatures (T/Tm = 0.22-0.24) consist of small round grains with diameters of 30-60 nm and heights of 2-7 nm. The surface heights of these metal films distribute randomly around the surface height at 0 nm and the morphology is caused by self-shadowing during the deposition. The grain size becomes large due to surface diffusion of adatoms and the film surfaces have individual characteristic morphology and roughnesses as T increases. The surface of the Al film becomes very smooth as T increases and the atomically smooth surface is obtained at T/Tm = 0.56-0.67 (250-350 °C). On the other hand, the atomically smooth surface of the Au film is obtained at T/Tm = 0.56 (473 ± 3 °C). The films of In, Sn, Bi, and Pb prepared at T/Tm = 0.55-0.70 also show the individual characteristic surface morphology.  相似文献   

12.
We have used nulling ellipsometry to measure the glass transition temperature, T g , of thin films of polystyrene in ambient, dry nitrogen, and vacuum environments. For all environments, the measured T g values decrease with decreasing film thickness in a way that is quantitatively similar to previously reported studies in ambient conditions. These results provide strong reinforcement of previous conclusions that such reduced T g values are an intrinsic property of the confined material. Furthermore, the results are in contrast to recent reports which suggest that the T g reductions measured by many researchers are the results of artifacts (i.e. degradation of the polymer due to annealing in ambient conditions, or moisture content).  相似文献   

13.
A criterion is developed to predict the resulting evolution process of the following surface defects on thin (17 nm) polystyrene (PS) films on silicon (Si): (i) nanoindentation-induced indents which grow after being heated above the glass transition temperature of PS, Tg, leading to dewetting; (ii) nanoindentation-induced indents which level at temperatures above the Tg, resulting in a flat polymer surface and (iii) indents which are formed and grow spontaneously by thermal treatment above the Tg (thermal film break up). The criterion is based on the concept of the excess surface energy, ΔFγ, which was introduced in previous reports for cases (i) and (ii). Here, a similar energetic term is used which corresponds only to the effect of the depressions, ΔFγ(D). The effect of the rims which surround the depressions in cases (i) and (ii) is not taken into account. Measurements of ΔFγ(D), performed by atomic force microscopy, prior to any treatment above the Tg suggest that growing depressions (cases i and iii) correspond to ΔFγ(D) > 1.5 × 10−16 J while for healing depressions (case ii) ΔFγ(D) < 1.8 × 10−16 J. A critical region of ΔFγ(D) exists from 1.5 × 10−16 J to 1.8 × 10−16 J. Depressions which correspond to this, rather short, region can either grow or heal.  相似文献   

14.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface.  相似文献   

15.
This paper describes the development of surface morphology of thin InSn(90/10), In, Sn and Cr films, deposited on unheated glass substrates by d.c. magnetron sputtering, with the film thickness. The experiments show that the surface morphology of metallic films with low melting pointsT m[InSn(90/10)–150°C, In–156.6°C, Sn–231.8°C] and that with high melting pointT m [Cr–1875°C] strongly differ. InSn(90/10) and Sn films with thickness greater than about 30 nm and also In films with even lower thickness of about 20 nm have a rough surface, milky color and matt appearance. On the contrary, Cr films of the same thickness have a smooth and shiny surface. It is due to a large difference in normalized temperaturesT/T m for low-T m films [Sn–0.59, In–0.70, InSn(90/10) –0.71] and for high-T m films [Cr–0.14] deposited at low temperatures close to room temperature (RT). High values of the ratioT/T m>0.5 clearly indicate that just the low melting point materials can crystallize at low temperatures close to RT. A crystallization of lowT m films results in rough surface, milky color and matt appearance of these films.This work was supported in part by the Grant Agency of Czech Republic under Grant No. 202/93/0508.  相似文献   

16.
Confinement effects in polystyrene and poly(methyl methacrylate) films and nanocomposites are studied by fluorescence. The ability to employ an intensive measurable, the excited-state fluorescence lifetime, in defining the glass transition temperature, Tg, of polymers is demonstrated and compared to the use of an extensive measurable, fluorescence intensity. In addition, intrinsic fluorescence from the phenyl groups in polystyrene is used to determine the Tg-confinement effect in films as thin as ~15 nm. The decrease in Tg with decreasing film thickness (below ∼60 nm) agrees well with results obtained by extrinsic pyrene fluorescence. Dye label fluorescence is used to quantify the enhancement in Tg observed with decreasing thickness (below ~90 nm) in poly(methyl methacrylate) films; addition of 2–4 wt% dioctyl phthalate plasticizer reduces or eliminates the Tg-confinement effect in films down to 20 nm thickness. Intrinsic polystyrene fluorescence, which is sensitive to local conformation, is used to quantify the time scales (some tens of minutes) associated with stress relaxation in thin and ultrathin spin-coated films at Tg + 10 K. Finally, the shape of the fluorescence spectrum of pyrene doped at trace levels in polystyrene films and polystyrene-silica nanocomposites is used to determine effects of confinement on microenvironment polarity.  相似文献   

17.
We have studied the effect of physical ageing in thin supported glassy polystyrene films by using ellipsometry to detect overshooting in the expansivity-temperature curve upon heating of aged samples. Films with thickness 10-200 nm have been aged at 70° C and 80° C (below the bulk glass transition temperature). We observe clear relaxation peaks in the expansivity-temperature curve for films thicker than 18 nm but not for the 10 nm film. The intensity of the relaxation peak is inversely proportional to the film thickness, while the temperatures characteristic to the relaxation peak are almost independent of the film thickness. These observations are successfully interpreted by the idea that the surface layer of the order of 10 nm has liquid-like thermal properties. Received 28 October 2002 / Published online: 1 April 2003 RID="a" ID="a"Present address: Yokohama Research Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-chou, Aoba-ku, Yokohama 227-8502, Japan; e-mail: kawana@rc.m-kagaku.co.jp  相似文献   

18.
We have used ellipsometry to measure the initial stages of interface healing in bilayer polystyrene films. We also used ellipsometry to measure the glass transition temperature Tg of the same or identically prepared samples. The results indicate that as the film thickness is decreased, the time constant for the interface healing process increases, while at the same time the measured glass transition temperature in the same samples decreases as the film thickness is decreased. This qualitative difference in the behavior indicates that it is not always possible to make inferences about one probe of polymer dynamics from measurements of another. We propose a reason for this discrepancy based on a previously discussed origin for reduction in the Tg value of thin films.  相似文献   

19.
Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (<30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-T c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain. In overdoped and underdoped in-plane compressed (the strain is induced by the choice of substrate) ≈15 nm thin La2 − x Sr x CuO4 (LSCO) films we almost double T c to 40 K, from 20 K and 24 K, respectively. Yet the Fermi surface (FS) remains essentially two-dimensional. In contrast, ARPES data under tensile strain exhibit the dispersion that is three-dimensional, yet T c drastically decreases. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO2 plane, enhances the two-dimensional character of the dispersion and increases T c, while the tensile strain acts in the opposite direction and the resulting dispersion is three-dimensional. We have established the shape of the FS for both cases, and all our data are consistent with other ongoing studies, like EXAFS. As the actual lattice of cuprates is like a ‘Napoleon-cake’, i.e. rigid CuO2 planes alternating with softer ‘reservoir’, that distort differently under strain, our data rule out all oversimplified two-dimensional (rigid lattice) mean field models. The work is still in progress on optimized La-doped Bi-2201 films with enhanced T c.   相似文献   

20.
Planar quarter wave stacks based on amorphous chalcogenide Ge-Se alternating with polymer polystyrene (PS) thin films are reported as Bragg reflectors for near-infrared region. Chalcogenide films were prepared using a thermal evaporation (TE) while polymer films were deposited using a spin-coating technique. The film thicknesses, d∼165 nm for Ge25Se75 (n=2.35) and d∼250 nm for polymer film (n=1.53), were calculated to center the reflection band round 1550 nm, whose wavelengths are used in telecommunication. Optical properties of prepared multilayer stacks were determined in the range 400-2200 nm using spectral ellipsometry, optical transmission and reflection measurements. Total reflection for normal incidence of unpolarized light was observed from 1530 to 1740 nm for 8 Ge-Se+7 PS thin film stacks prepared on silicon wafer. In addition to total reflection of light with normal incidence, the omnidirectional total reflection of TE-polarized light from 8 Ge-Se+7 PS thin film stacks was observed. Reflection band maxima shifted with varying incident angles, i.e., 1420-1680 nm for 45° deflection from the normal and 1300-1630 nm for 70° deflection from the normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号