首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
中波红外光学系统无热化设计   总被引:4,自引:2,他引:2  
分析了光学被动式无热化设计的原理,介绍了衍射元件的温度特性和色散特性,讨论了折射系统和折/衍混合系统的无热化设计的方法,并根据该方法设计了3.7~4.8 μm波段的折射系统和折/衍混合系统.设计结果表明,这些系统在-30~70℃温度范围内成像质量接近衍射极限,满足高精度红外系统的技术要求.  相似文献   

2.
张婉怡 《应用光学》2017,38(1):12-18
为了提高远距离红外目标的探测能力,针对640 pixel×512 pixel红外CCD探测器,分析温度变化对光学系统的影响,设计出一种波长范围为8 μm~12 μm红外摄远物镜。系统采用折衍混合结构形式,焦距为200 mm,相对孔径为1:2.2,视场角为7°,具有体积小,结构紧凑的优点。仅使用硫化锌、硒化锌和锗3种材料以及4片透镜实现了无热化设计。应用Zemax对设计结果进行像质评价,在-40 ℃~+60 ℃工作温度范围内,截止频率为17 lp/mm时各视场调制传递函数值超过0.4,达到衍射极限,像面稳定,80%的能量集中在1个像元内,满足光学系统的设计要求。  相似文献   

3.
8~14μm波段折衍混合红外光学系统的热补偿设计   总被引:1,自引:0,他引:1  
张羽  杨长城  杨坤涛 《光学学报》2005,25(11):535-1538
大多数军用和空间光学仪器的工作环境温度变化范围都较大,温度变化时光学元件的曲率、厚度和间隔都将发生变化,同时元件基体材料的折射率及所在介质的折射率也将发生变化。由于红外光学材料的折射率温度系数dn/dT较大,环境温度对红外光学系统的影响显得尤为严重。因此在红外成像系统中不得不加入主动或被动补偿机构,以补偿温度变化造成像面移动所引起的系统性能的降低。利用衍射元件独特的温度特性实现红外光学系统热补偿设计的方法,设计了波段为8~14μm、视场为16。的折衍混合红外光学系统。该系统使用硒化锌和锗两种红外材料,在一40~60℃的温度范围内的成像质量接近衍射极限,并且体积小、结构简单,重量轻。  相似文献   

4.
设计了工作于8~12 μm波段的折/衍混合双位置两档变焦光学系统.该系统变焦过程中相对孔径保持不变,F/#为1.7,系统变倍比为3.75∶1.大视场角为19.2°,有效焦距33 mm,用于在大范围内搜索目标;小视场角为5.1°,有效焦距125 mm,用于对目标进行具体分析.系统采用锗和硒化锌两种材料,为四片镜结构,仅通过两片透镜的轴向移动便可完成两个视场的切换.系统中引入二元面和高次非球面,使系统结构简化,并极大地提高了成像质量.该系统适用于像元尺寸20 μm的非致冷式面阵探测器,可广泛应用于军事扫描成像和红外前视系统中.  相似文献   

5.
基于衍射元件的特殊成像性质,使用双层衍射元件进行双波段红外光学系统设计已成为研究热点。使用双层衍射元件能够有效提升宽波段的衍射效率,在简化系统结构的基础上提高像质。将红外成像系统设计为制冷型结构,能够消除背景噪声干扰,保证100%的冷光阑效率。基于带宽积分平均衍射效率最大化方法,设计了一款含有双层衍射元件的制冷型双波段红外光学成像系统,实现了在双波段红外和宽温度范围下的无热化设计。光学系统含有三片透镜,仅由两种材料组成,入瞳直径为80 mm,焦距为100 mm,F数为1.25,有效视场为6°,工作波段为3.7~4.8μm和8.0~12.0μm,工作环境温度为-40~60℃。分析结果表明,在整个温度范围内,在17 lp/mm截止频率处,双波段红外光学系统所有视场的调制传递函数分别高于0.78和0.59,同时双层衍射元件在红外双波段的带宽积分平均衍射效率分别为99.35%和98.73%,综合带宽积分平均衍射效率为99.04%。此光学系统的结构设计简单,成像质量好,在军事和商业应用中具有一定优势。  相似文献   

6.
随着非制冷红外探测器技术的快速发展,非制冷红外光学系统得到了广泛应用。为满足机载或弹载非制冷红外光学系统结构尺寸紧凑、相对孔径大、温度适应性强、杂散光抑制能力高的要求,采用折反射式二次成像光学系统结构形式,实现了远射比0.55,F数0.8的光学系统设计,同时采用光学被动补偿方式,通过适当的光学和结构材料匹配实现了-40℃~50℃无热化设计,并配合一次像面处视场光阑保证光学系统具有较高的杂散光抑制能力。给出了完整的光学系统设计,设计结果表明:光学系统在不同温度下各视场调制传递函数接近衍射极限,空间排布紧凑。通过高低温成像实验,验证了该非制冷红外光学系统满足机载或弹载应用的环境要求。  相似文献   

7.
红外3.7~4.8 μm波段折射/衍射光学系统的消热差设计   总被引:2,自引:0,他引:2  
研究了衍射光学元件在红外折射/衍射混合光学系统中的消热差特性并给出了具体设计实例,该系统工作波段为3.7~4.8 μm,全视场角为7.12°,满足100%冷光阑效率.系统仅采用硅和锗两种材料,设计结果表明,该系统在-50~100℃温度范围内不仅成像质量接近衍射极限,而且结构简单、体积小、质量轻,适用于像元尺寸为30 μm、像元数320×240的凝视焦平面阵列探测器.  相似文献   

8.
中波红外成像无热化光学系统设计   总被引:1,自引:1,他引:0       下载免费PDF全文
介绍了温度变化对红外光学系统的影响和红外光学系统无热化设计的常用方法。应用CODE-V光学设计软件设计了一个工作于中红外光谱波段的折射式全球面镜无热化光学系统,采用锗、硅和硒化锌3种光学材料,系统镜间材料为铝合金。设计结果表明:在-40℃~+65℃温度范围内,光学系统的成像质量接近衍射极限,且光学系统的出瞳与光栏重合,具有结构简单、体积小、质量轻、成本低等优点,可应用于空间红外光学系统。  相似文献   

9.
针对多模制导中长焦距红外光学系统结构紧凑及宽温度范围热稳定性的要求,设计了一种中波红外折反光学系统。该系统根据其它模式制导的要求,采用固定焦距和口径的主镜,通过二次成像,在保持长焦距的同时减小了透镜的口径,降低了到达中继成像系统主光线的高度,同时也降低了制造成本。设计了波长为3.7~4.8 μm、焦距f为300 mm、F数为2的中波红外成像系统。结果表明,该系统结构紧凑像质优良,各视场光学传递函数均大于0.6,接近衍射极限,并且在-50~70℃可实现光学被动消热差。针对该光学系统进行了公差分析并提出了抑制杂散辐射的方法,该系统满足实际加工和应用需求。  相似文献   

10.
红外光学系统无热化设计方法的研究   总被引:13,自引:5,他引:8  
王学新  焦明印 《应用光学》2009,30(1):129-133
无热化设计是利用不同手段消除环境温度变化对光学系统性能的影响。针对红外光学系统,提出一种光学被动式无热化设计方法。从单个透镜出发,列出透镜组的消热差方程组,通过笛卡尔坐标系描绘出常用红外材料的消热差系数和消色差系数,使用图解方法求得红外材料的合理组合,同时得到归一化的组合光焦度分配。最后用实例说明光学被动式无热化设计的求解过程,并通过光学设计软件对结果进行分析,说明该设计结果在-40℃~+60℃温度范围内均满足消热差和像差要求。  相似文献   

11.
大相对孔径紧凑型无热化红外光学系统设计   总被引:7,自引:3,他引:7  
曲贺盟  张新  王灵杰  张继真 《光学学报》2012,32(3):322003-216
根据目前搜索和跟踪系统要求其红外成像光学系统具有高成像质量、超轻小型化和高温度适应性的特点。采用折反射式光学系统结构形式,基于J-T制冷型320×320凝视焦平面阵列探测器,设计了一种大相对孔径紧凑型无热化红外光学系统,光学系统远摄比达到0.6。采用光学被动消热差方法进行设计,使该系统在-40℃~60℃温度范围内实现了无热化。同时采用杂散辐射分析软件对系统进行杂散辐射分析,提出合理杂辐射抑制方案,给出了完整的光学系统设计。结果表明,光学系统在不同温度环境下所有视场的调制传递函数(MTF)(17lp/mm)均接近衍射极限,80%的能量集中在1个像元内,且具有结构紧凑、体积小等优点,可满足搜索和跟踪红外光学系统的使用要求。  相似文献   

12.
大相对孔径长波红外光学系统无热化设计   总被引:2,自引:0,他引:2       下载免费PDF全文
张续严  姜瑞凯  贾宏光 《应用光学》2011,32(6):1227-1231
 针对目前许多军工仪器红外成像系统的结构简单、体积小、质量轻的无热化设计要求,采用光学被动式方法对8 μm~12 μm波段、相对孔径为1的红外光学系统进行了无热化设计。具体光学系统参数:F=1,f=60 mm,2ω=11.4°。设计结果:在-40℃~60℃工作范围内,该系统的调制传递函数(MTF)接近衍射极限,空间分辨率在20 lp/mm处,中心视场传函接近0.7,边缘视场传函大于0.6。其设计结果满足系统的无热化设计要求。  相似文献   

13.
周崇喜  李展 《光子学报》1996,25(12):1100-1105
本文针对空间光学系统轻型特点,设计了一个二元光学折/衍混合红外反射式望远系统。采用了离轴式格里高利(Gregorian)结构形式,消除了望远系统中的中心遮拦问题。用衍射光学元件校正系统象差,使反射面为球面,二元光学表面尺寸比施密特(Schmidt)校正板(位于入瞳处)缩小于3~4倍,光学设计运用OSLO软件,光学系统的通光孔径φ=120mm,焦距f=-1000mm,波长λ=4.3μm,视场2ω=2°×6°(子午×弧矢),分辨率Res=0.05mm,MTF≥0.4(空间频率fre≤10cl/mm).  相似文献   

14.
介绍了光学系统无热化设计的常用方法及设计原理。为满足军用光学系统的工作要求,采用较优的光学被动式补偿无热化设计方法,设计了一个红外光学系统。该系统在-40~60℃温度范围内成像质量接近衍射极限,且结构简单、重量轻、易于加工,可应用于红外导引头光学系统。  相似文献   

15.
研究了一种低成本折反式红外系统的光学被动消热差技术,通过理论分析温度变化对二次成像系统性能的影响,在次镜上采用曼金折反镜,将热离焦作为附加的初级像差引入像差平衡关系式,通过常规光学系统消像差和热差4种途径(分配光焦度、有效匹配光学材料与镜筒材料、改变透镜形状、引入非球面)实现全被动补偿。在此基础上建立了一个通用模型,在-45℃~+60℃温度范围内的MTF在17 lp/mm时达到05以上,冷反射等效温差在052℃以内。  相似文献   

16.
邓键  李锐钢  邓显池  吴斌 《应用光学》2014,35(1):146-149
研究了一种低成本折反式红外系统的光学被动消热差技术,通过理论分析温度变化对二次成像系统性能的影响,在次镜上采用曼金折反镜,将热离焦作为附加的初级像差引入像差平衡关系式,通过常规光学系统消像差和热差4种途径(分配光焦度、有效匹配光学材料与镜筒材料、改变透镜形状、引入非球面)实现全被动补偿。在此基础上建立了一个通用模型,在-45℃~+60℃温度范围内的MTF在17 lp/mm时达到0.5以上,冷反射等效温差在0.52℃以内。  相似文献   

17.
折/衍混合的红外双视场光学系统设计   总被引:1,自引:0,他引:1  
为了实现红外双视场光学系统两个视场间的快速切换,同时满足便携式及易安装的需求,设计了一种轻量化的折/衍混合红外双视场光学系统.系统采用折/衍混合和二次成像光学结构,利用光学设计软件对系统进行优化,评价了系统的像质,分析了系统温度补偿问题并给出其温度调焦曲线.系统工作波长为3.7~4.8μm,能实现120mm/60mm两档焦距变换.设计结果表明,冷光阑效率达到100%,在探测器的Nyquist频率33lp/mm处,轴外视场光学系统的调制传递函数大于0.3,系统光学总长为200mm.整个系统包括7块透镜,只需移动一片透镜就能完成双视场的转换,结构简单,实现了轻量化和高质量成像.  相似文献   

18.
对含有一个用金刚石车削技术制作的衍射光学元件(DOE)的折/衍混合长波红外(LWIR)凝视成像系统进行了杂散光分析.利用LightTools软件对DOE的不同衍射级次、光学表面多次反射、镜筒内壁反射等主要杂散光源进行了模拟和分析,对6种二次反射的模拟结果表明,对归一化的光源,理想光路的像面辐照度为100 W/mm2,每种二次反射会给像面带来0.01 W/mm2的辐照度;反射率为10%的镜筒内壁给像面带来的辐照度为0.01 W/mm2.利用该LWIR凝视成像光学系统进行了相关实验,实验结果证明了上述分析的正确性,表明该项分析有利于对LWIR凝视成像系统光学性能的进一步理解和杂散光的抑制.  相似文献   

19.
设计了一种用于长波非制冷红外和半主动激光复合导引的共口径折反式光学系统。为了减小反射式系统的零件加工和装调难度,将卡塞格林系统次反射镜简化为平面反射镜,主反射镜采用金属抛物面,优化目镜组透镜尺寸,避免光路内部遮挡,利用反射式系统一次像面,配合红外材料选取实现红外通道的光学被动消热差设计;在平行光路中设置平板分光和激光窄带滤光片,提高系统分光效率和透过率。设计结果表明:红外通道特征频率35.7 lp/mm处MTF>0.2,激光线性区为2°,满足系统指标要求。  相似文献   

20.
高速切换紧凑型双视场无热化红外光学系统设计   总被引:1,自引:0,他引:1  
曲贺盟  张新 《中国光学》2014,7(4):622-630
采用透射二次成像光学系统结构形式,实现了远射比为1,F数为1.67,变倍比为4.6的红外双视场光学系统设计。采用光学元件切换变倍方式,配合电磁阀切换机构实现了60 ms的变倍速率;采用光学被动补偿方式,通过适当的光学和结构材料匹配,实现了-40~+50℃无热化设计。设计结果表明:光学系统在不同温度下各视场调制传递函数在特征频率为20 lp/mm时接近衍射极限,空间排布紧凑,视场切换速度快,该双视场红外光学系统满足应用需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号