首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cost and complexity are key factors in designing microfluidic devices for broad application. Therefore, the development of a simple, inexpensive, and easily manufactured fabrication technique that does not require expensive chemicals or instruments is necessary. We have successfully demonstrated the use of long-lived oxygen radicals for the fabrication of membrane-based microfluidic devices on polycaprolactone (PCL)-filled glass microfiber (GMF) membranes. These devices may incorporate complex multidimensional (2D and 3D) microfluidic pathways on a single PCL-filled GMF membrane. Selective exposure to oxygen radicals generated in a homebuilt oxygen plasma exposure system was employed to pattern the flow path; radical exposure of the polymer-filled substrate altered the physical and chemical properties of the surface, affecting wettability. To the best of our knowledge, this is the only wicking microfluidic device fabrication technology that is capable of generating both 2D and 3D microfluidic pathways in a single membrane; hence, it has many potential applications. Investigations were conducted to probe the effects of oxygen radical exposure in order to provide a more quantitative understanding of the process. These findings will help expand the utility of the selective oxygen radical exposure–driven fabrication technology.  相似文献   

2.
Yuen PK  Su H  Goral VN  Fink KA 《Lab on a chip》2011,11(8):1541-1544
This technical note presents a fabrication method and applications of three-dimensional (3D) interconnected microporous poly(dimethylsiloxane) (PDMS) microfluidic devices. Based on soft lithography, the microporous PDMS microfluidic devices were fabricated by molding a mixture of PDMS pre-polymer and sugar particles in a microstructured mold. After curing and demolding, the sugar particles were dissolved and washed away from the microstructured PDMS replica revealing 3D interconnected microporous structures. Other than introducing microporous structures into the PDMS replica, different sizes of sugar particles can be used to alter the surface wettability of the microporous PDMS replica. Oxygen plasma assisted bonding was used to enclose the microstructured microporous PDMS replica using a non-porous PDMS with inlet and outlet holes. A gas absorption reaction using carbon dioxide (CO(2)) gas acidified water was used to demonstrate the advantages and potential applications of the microporous PDMS microfluidic devices. We demonstrated that the acidification rate in the microporous PDMS microfluidic device was approximately 10 times faster than the non-porous PDMS microfluidic device under similar experimental conditions. The microporous PDMS microfluidic devices can also be used in cell culture applications where gas perfusion can improve cell survival and functions.  相似文献   

3.
Liao Y  Song J  Li E  Luo Y  Shen Y  Chen D  Cheng Y  Xu Z  Sugioka K  Midorikawa K 《Lab on a chip》2012,12(4):746-749
The creation of complex three-dimensional (3D) microfluidic systems has attracted significant attention from both scientific and applied research communities. However, it is still a formidable challenge to build 3D microfluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. Here, we demonstrate rapid fabrication of high-aspect-ratio microfluidic channels with various 3D configurations in glass substrates by femtosecond laser direct writing. Based on this approach, we demonstrate a 3D passive microfluidic mixer and characterize its functionalities. This technology will enable rapid construction of complex 3D microfluidic devices for a wide array of lab-on-a-chip applications.  相似文献   

4.
This article is a brief overview of the emerging microfluidic systems called surface‐tension‐confined microfluidic (STCM) devices. STCM devices utilize surface energy that can control the movement of fluid droplets. Unlike conventional poly(dimethylsiloxane)‐based microfluidics which confine the movement of fluids by three‐dimensional (3D) microchannels, STCM systems provide two‐dimensional (2D) platforms for microfluidics. A variety of STCM devices have been prepared by various micro‐/nanofabrication strategies. Advantages of STCM devices over conventional microfluidics are significant reduction of energy consumption during device operation, facile introduction of fluids onto 2D microchannels without the use of a micropump, increased flow rate in a special type of STCM device, among others. Thus, STCM devices can be excellent alternatives for certain areas in microfluidics. In this Minireview, fabrication methods, operating modes, and applications of STCM devices are introduced.  相似文献   

5.
We present a simple method for fabricating chemically-inert Teflon microfluidic valves and pumps in glass microfluidic devices. These structures are modeled after monolithic membrane valves and pumps that utilize a featureless polydimethylsiloxane (PDMS) membrane bonded between two etched glass wafers. The limited chemical compatibility of PDMS has necessitated research into alternative materials for microfluidic devices. Previous work has shown that spin-coated amorphous fluoropolymers and Teflon-fluoropolymer laminates can be fabricated and substituted for PDMS in monolithic membrane valves and pumps for space flight applications. However, the complex process for fabricating these spin-coated Teflon films and laminates may preclude their use in many research and manufacturing contexts. As an alternative, we show that commercially-available fluorinated ethylene-propylene (FEP) Teflon films can be used to fabricate chemically-inert monolithic membrane valves and pumps in glass microfluidic devices. The FEP Teflon valves and pumps presented here are simple to fabricate, function similarly to their PDMS counterparts, maintain their performance over extended use, and are resistant to virtually all chemicals. These structures should facilitate lab-on-a-chip research involving a vast array of chemistries that are incompatible with native PDMS microfluidic devices.  相似文献   

6.
Cell-based microfluidic devices have attracted interest for a wide range of applications. While optical cell counting and flow cytometry-type devices have been reported extensively, sensitive and efficient non-optical methods to detect and quantify cells attached over large surface areas within microdevices are generally lacking. We describe an electrical method for counting cells based on the measurement of changes in conductivity of the surrounding medium due to ions released from surface-immobilized cells within a microfluidic channel. Immobilized cells are lysed using a low conductivity, hypotonic media and the resulting change in impedance is measured using surface patterned electrodes to detect and quantify the number of cells. We found that the bulk solution conductance increases linearly with the number of isolated cells contributing to solution ion concentration. The method of cell lysate impedance spectroscopy is sensitive enough to detect 20 cells microL(-1), and offers a simple and efficient method for detecting and enumerating cells within microfluidic devices for many applications including measurement of CD4 cell counts in HIV patients in resource-limited settings. To our knowledge, this is the most sensitive approach using non-optical setups to enumerate immobilized cells. The microfluidic device, capable of isolating specific cell types from a complex bio-fluidic and quantifying cell number, can serve as a single use cartridge for a hand-held instrument to provide simple, fast and affordable cell counting in point-of-care settings.  相似文献   

7.
The widespread interest in micro total analysis systems has resulted in efforts to develop devices in cheaper polymer materials such as polydimethylsiloxane (PDMS) as an alternative to expensive glass and silicon devices. We describe the oxidation of the PDMS surface to form ionizable groups using a discharge from a Tesla coil and subsequent chemical modification to augment electroosmotic flow (EOF) within the microfluidic devices. The flow performance of oxidized, amine-modified and unmodified PDMS materials has been determined and directly compared to conventional glass devices. Exact PDMS replicas of glass substrates were prepared using a novel two step micromolding protocol. Chemical force microscopy has been utilized to monitor and measure the efficacy of surface modification yielding information about the acid/base properties of the modified and unmodified surfaces. Results with different substrate materials correlates well with expected flow modifications as a result of surface modification. Oxidized PDMS devices were found to support faster EOF (twice that of native PDMS) similar to glass while those derivatized with 3-aminopropyl triethoxysilane (APTES) showed slower flow rates compared to native PDMS substrates as a result of masking surface charge. Results demonstrate that the surface of PDMS microdevices can be manipulated to control EOF characteristics using a facile surface derivatization methodology allowing surfaces to be tailored for specific microfluidic applications and characterized with chemical force microscopy.  相似文献   

8.
This paper describes the fabrication of microfluidic cloth-based analytical devices (μCADs) using a simple wax patterning method on cotton cloth for performing colorimetric bioassays. Commercial cotton cloth fabric is proposed as a new inexpensive, lightweight, and flexible platform for fabricating two- (2D) and three-dimensional (3D) microfluidic systems. We demonstrated that the wicking property of the cotton microfluidic channel can be improved by scouring in soda ash (Na(2)CO(3)) solution which will remove the natural surface wax and expose the underlying texture of the cellulose fiber. After this treatment, we fabricated narrow hydrophilic channels with hydrophobic barriers made from patterned wax to define the 2D microfluidic devices. The designed pattern is carved on wax-impregnated paper, and subsequently transferred to attached cotton cloth by heat treatment. To further obtain 3D microfluidic devices having multiple layers of pattern, a single layer of wax patterned cloth can be folded along a predefined folding line and subsequently pressed using mechanical force. All the fabrication steps are simple and low cost since no special equipment is required. Diagnostic application of cloth-based devices is shown by the development of simple devices that wick and distribute microvolumes of simulated body fluids along the hydrophilic channels into reaction zones to react with analytical reagents. Colorimetric detection of bovine serum albumin (BSA) in artificial urine is carried out by direct visual observation of bromophenol blue (BPB) colour change in the reaction zones. Finally, we show the flexibility of the novel microfluidic platform by conducting a similar reaction in a bent pinned μCAD.  相似文献   

9.
Liu K  Fan ZH 《The Analyst》2011,136(7):1288-1297
Microfluidics is a platform technology that has been used for genomics, proteomics, chemical synthesis, environment monitoring, cellular studies, and other applications. The fabrication materials of microfluidic devices have traditionally included silicon and glass, but plastics have gained increasing attention in the past few years. We focus this review on thermoplastic microfluidic devices and their applications in protein and DNA analysis. We outline the device design and fabrication methods, followed by discussion on the strategies of surface treatment. We then concentrate on several significant advancements in applying thermoplastic microfluidic devices to protein separation, immunoassays, and DNA analysis. Comparison among numerous efforts, as well as the discussion on the challenges and innovation associated with detection, is presented.  相似文献   

10.
Mammalian cells cultured on 2D surfaces in microfluidic channels are increasingly used in drug development and biological research applications. These systems would have more biological or clinical relevance if the cells exhibit 3D phenotypes similar to the cells in vivo. We have developed a microfluidic channel based system that allows cells to be perfusion-cultured in 3D by supporting them with adequate 3D cell-cell and cell-matrix interactions. The maximal cell-cell interaction was achieved by perfusion-seeding cells through an array of micropillars; and 3D cell-matrix interactions were achieved by a polyelectrolyte complex coacervation process to form a thin layer of matrix conforming to the 3D cell shapes. Carcinoma cell lines (HepG2, MCF7), primary differentiated (hepatocytes) and primary progenitor cells (bone marrow mesenchymal stem cells) were perfusion-cultured for 72 hours to 1 week in the microfluidic channel, which preserved their 3D cyto-architecture and cell-specific functions or differentiation competence. This transparent 3D microfluidic channel-based cell culture system also allows direct optical monitoring of cellular events for a wide range of applications.  相似文献   

11.
A software-programmable microfluidic device for automated biology   总被引:1,自引:0,他引:1  
Fidalgo LM  Maerkl SJ 《Lab on a chip》2011,11(9):1612-1619
Specific-purpose microfluidic devices have had considerable impact on the biological and chemical sciences, yet their use has largely remained limited to specialized laboratories. Here we present a general-purpose software-programmable microfluidic device which is capable of performing a multitude of low- and high-level functions without requiring any hardware modifications. To demonstrate the applicability and modularity of the device we implemented a variety of applications such as a microfluidic display, fluid metering and active mixing, surface immunoassays, and cell culture. We believe that analogously to personal computers, programmable, general-purpose devices will increase the accessibility and advance the pervasiveness of microfluidic technology.  相似文献   

12.
We have evaluated five bioconjugation chemistries for immobilizing DNA onto silicon substrates for microfluidic biosensing applications. Conjugation by organosilanes is compared with linkage by carbonyldiimidazole (CDI) activation of silanol groups and utilization of dendrimers. Chemistries were compared in terms of immobilization and hybridization density, stability under microfluidic flow-induced shear stress, and stability after extended storage in aqueous solutions. Conjugation by dendrimer tether provided the greatest hybridization efficiency; however, conjugation by aminosilane treated with glutaraldehyde yielded the greatest immobilization and hybridization densities, as well as enhanced stability to both shear stress and extended storage in an aqueous environment. Direct linkage by CDI activation provided sufficient immobilization and hybridization density and represents a novel DNA bioconjugation strategy. Although these chemistries were evaluated for use in microfluidic biosensors, the results provide meaningful insight to a number of nanobiotechnology applications for which microfluidic devices require surface biofunctionalization, for example vascular prostheses and implanted devices. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Oh KW  Lee K  Ahn B  Furlani EP 《Lab on a chip》2012,12(3):515-545
This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.  相似文献   

14.
Deng NN  Meng ZJ  Xie R  Ju XJ  Mou CL  Wang W  Chu LY 《Lab on a chip》2011,11(23):3963-3969
Droplet microfluidics, which can generate monodisperse droplets or bubbles in unlimited numbers, at high speed and with complex structures, have been extensively investigated in chemical and biological fields. However, most current methods for fabricating microfluidic devices, such as glass etching, soft lithography in polydimethylsiloxane (PDMS) or assembly of glass capillaries, are usually either expensive or complicated. Here we report the fabrication of simple and cheap microfluidic devices based on patterned coverslips and microscope glass slides. The advantages of our approach for fabricating microfluidic devices lie in a simple process, inexpensive processing equipment and economical laboratory supplies. The fabricated microfluidic devices feature a flexible design of microchannels, easy spatial patterning of surface wettability, and good chemical compatibility and optical properties. We demonstrate their utilities for generation of monodisperse single and double emulsions with highly controllable flexibility.  相似文献   

15.
SC Lin  PW Yen  CC Peng  YC Tung 《Lab on a chip》2012,12(17):3135-3141
Flow cytometry is a technique capable of optically characterizing biological particles in a high-throughput manner. In flow cytometry, three dimensional (3D) hydrodynamic focusing is critical for accurate and consistent measurements. Due to the advantages of microfluidic techniques, a number of microfluidic flow cytometers with 3D hydrodynamic focusing have been developed in recent decades. However, the existing devices consist of multiple layers of microfluidic channels and tedious fluidic interconnections. As a result, these devices often require complicated fabrication and professional operation. Consequently, the development of a robust and reliable microfluidic flow cytometer for practical biological applications is desired. This paper develops a microfluidic device with a single channel layer and single sheath-flow inlet capable of achieving 3D hydrodynamic focusing for flow cytometry. The sheath-flow stream is introduced perpendicular to the microfluidic channel to encircle the sample flow. In this paper, the flow fields are simulated using a computational fluidic dynamic (CFD) software, and the results show that the 3D hydrodynamic focusing can be successfully formed in the designed microfluidic device under proper flow conditions. The developed device is further characterized experimentally. First, confocal microscopy is exploited to investigate the flow fields. The resultant Z-stack confocal images show the cross-sectional view of 3D hydrodynamic with flow conditions that agree with the simulated ones. Furthermore, the flow cytometric detections of fluorescence beads are performed using the developed device with various flow rate combinations. The measurement results demonstrate that the device can achieve great detection performances, which are comparable to the conventional flow cytometer. In addition, the enumeration of fluorescence-labelled cells is also performed to show its practicality for biological applications. Consequently, the microfluidic flow cytometer developed in this paper provides a practical platform that can be used for routine analysis in biological laboratories. Additionally, the 3D hydrodynamic focusing channel design can also be applied to various applications that can advance the lab on a chip research.  相似文献   

16.
Here we describe a novel method of preparing hydrophobic silica particles (100-150 nm; water contact angle of dropcasted film ranging from 60 degrees to 168 degrees) by surface functionalization using different alkyltrichlorosilanes. During their preparation, the molecular surface roughness is also concurrently engineered facilitating a change in both the surface chemical composition and the geometrical microstructure to generate hierarchical structures. The water contact angle has been measured on drop-cast film surface. The enhancement in the water contact angle on 3D (curved) SAMs in comparison to that on 2D (planar) surface is discussed using the Cassie-Baxter equation. These silica particles can be utilized for many potential applications including selective adsorbents and catalysts, chromatographic supports and separators in microfluidic devices.  相似文献   

17.
Protein adsorption on PDMS surfaces poses a significant challenge in microfluidic devices that come into contact with biofluids such as blood. Polyurethane (PU) is often used for the construction of medical devices, but despite having several attractive properties for biointerfacing, it has not been widely used in microfluidic devices. In this work we developed two new fabrication processes for making thin, transparent and flexible PU-based microfluidic devices. Methods for the fabrication and bonding of microchannels, the integration of fluidic interconnections and surface modification with hydrophilic polyethylene oxide (PEO) to reduce protein adsorption are detailed. Using these processes, microchannels were produced having high transparency (96% that of glass in visible light), high bond strength (326.4 kPa) and low protein adsorption (80% reduction in fibrinogen adsorption vs. unmodified PDMS), which is critical for prevention of fouling. Our findings indicate that PEO modified PU could serve as an effective alternative to PDMS in blood contacting microfluidic applications.  相似文献   

18.
The recent shift among developers of microfluidic technologies toward modularized "plug and play" construction reflects the steadily increasing realization that, for many would-be users of microfluidic tools, traditional clean-room microfabrication is prohibitively complex and/or expensive. In this work, we present an advanced modular microfluidic construction scheme in which pre-fabricated microfluidic assembly blocks (MABs) can be quickly fashioned, without expertise or specialized facilities, into sophisticated microfluidic devices for a wide range of applications. Specifically, we describe three major advances to the MAB concept: (1) rapid production and extraction of MABs using flexible casting trays, (2) use of pre-coated substrates for simultaneous assembly and bonding, and (3) modification of block design to include automatic alignment and sealing structures. Finally, several exemplary applications of these MABs are demonstrated in chemical gradient synthesis, droplet generation, and total internal reflection fluorescence microscopy.  相似文献   

19.
The use of polydimethylsiloxane (PDMS) in microfluidic devices is extensive in academic research. One of the most fundamental treatments is to expose PDMS to plasma oxidation in order to render its surface temporarily hydrophilic and capable of permanent bonding. Here, we show that changes in the surface chemistry induced by plasma oxidation can spatially be counteracted very cleanly and reliably in a scalable manner by subsequent microcontact printing of residual oligomers from a PDMS stamp. We characterize the surface modifications through contact angle, atomic force microscopy, X-ray photoelectron spectroscopy, and bond-strength measurements. We utilize this approach for negating the bonding of a flexible membrane layer within an elastomeric valve and demonstrate its effectiveness by integration of over one thousand normally closed elastomeric valves within a single substrate. In addition, we demonstrate that surface energy patterning can be used for "open microfluidic" applications that utilize spatial control of surface wetting.  相似文献   

20.
Interactions between ligands and cell surface receptors can be exploited to design adhesion-based microfluidic cell separation systems. When ligands are immobilized on the microfluidic channel surfaces, the resulting cell capture devices offer the typical advantages of small sample volumes and low cost associated with microfluidic systems, with the added benefit of not requiring complex fabrication schemes or extensive operational infrastructure. Cell-ligand interactions can range from highly specific to highly non-specific. This paper describes the design of an adhesion-based microfluidic separation system that takes advantage of both types of interactions. A 3-stage system of microfluidic devices coated with the tetrapeptides arg-glu-asp-val (REDV), val-ala-pro-gly (VAPG), and arg-gly-asp-ser (RGDS) is utilized to deplete a heterogeneous suspension containing endothelial cells, smooth muscle cells, and fibroblasts. The ligand-coated channels together with a large surface area allow effective depletion of all three cell types in a stagewise manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号