首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
利用子波分析对平壁湍流猝发现象的研究   总被引:7,自引:1,他引:7  
李栎  许春晓  张兆顺 《力学学报》2001,33(2):153-162
利用槽道湍流直接数值模拟的数据库,采用子波分析的方法。对平壁湍流猝发现象的多尺度特性进行了研究,在不同惊讶上对猝发平均周期进行了统计,并利用局部标度指数研究了猝发过程的奇异性。  相似文献   

2.
The turbulence in the ocean and atmosphere is most of the time non-homogeneous in nature. These spatial changes could affect the structure of the turbulence. In this work a classification is proposed to determine the intermittency and mixing ability. The variation of the structure functions and the scaling exponent in decaying non-homogeneous turbulence produced by a grid and by a jet is measured with a sonic velocimeter SONTEK3-D. We use Extended Self Similarity (ESS) to obtain better estimates of the scaling exponents of the structure functions of order up to the 6th. We study the variation of the absolute scaling exponents p and relative scaling exponents ¯p as a function of distance from the source of turbulence. In most cases, the absolute scaling exponent 3 is shown to vary as function of the separation distance l. On the other hand the relative scaling exponents ¯p depend on the location of the flow and in most cases the deviations from the Kolmogorov 1941 scaling are related to the intermittency.  相似文献   

3.
An approach to derive turbulent scaling laws based on symmetry analysis is presented. It unifies a large set of scaling laws for the mean velocity of stationary parallel turbulent shear flows. The approach is derived from the Reynolds averaged Navier–Stokes equations, the fluctuation equations, and the velocity product equations, which are the dyad product of the velocity fluctuations with the equations for the velocity fluctuations. For the plane case the results include the logarithmic law of the wall, an algebraic law, the viscous sublayer, the linear region in the centre of a Couette flow and in the centre of a rotating channel flow, and a new exponential mean velocity profile that is found in the mid-wake region of high Reynolds number flat-plate boundary layers. The algebraic scaling law is confirmed in both the centre and the near wall regions in both experimental and DNS data of turbulent channel flows. For a non-rotating and a moderately rotating pipe about its axis an algebraic law was found for the axial and the azimuthal velocity near the pipe-axis with both laws having equal scaling exponents. In case of a rapidly rotating pipe, a new logarithmic scaling law for the axial velocity is developed. The key elements of the entire analysis are two scaling symmetries and Galilean invariance. Combining the scaling symmetries leads to the variety of different scaling laws. Galilean invariance is crucial for all of them. It has been demonstrated that two-equation models such as the k– model are not consistent with most of the new turbulent scaling laws.  相似文献   

4.
Fluid–elastic systems nearing dynamic instabilities are known to be sensitive to fluctuations in fluid flow. A cantilever plate in axial flow with random temporal fluctuations, is examined numerically for its dynamical behaviour. The numerical model comprises of a nonlinear structural model for the flexible plate, coupled with unsteady lumped vortex model for the fluid forces. As the mean flow velocity is increased, the system transitions to limit cycle oscillations from a state of rest, through a regime of intermittent oscillations. The conditions for onset and disappearance of intermittency are discussed and are interpreted using stochastic bifurcation theories. While the onset of intermittency is found to be unaffected by the time scales of the flow fluctuations, they are observed to affect the length of the intermittency regime. The effect of plate flexibility on intermittency is also discussed.  相似文献   

5.
The statistical properties of the velocity differences are experimentally investigated in a turbulent jet-flow at moderate Re λ by X-probe hot wire anemometry measurements. It is found that the traverse velocity components show a more intermittent behavior with respect to the longitudinal ones. This result is obtained by the analysis of the longitudinal and transverse intermittency exponents measured by the Extended Self-Similarity form of scaling, and by the comparison of the longitudinal and transverse velocity difference Probability Distribution Functions. Received: 25 March 1996/Accepted: 15 August 1996  相似文献   

6.
 An experimental investigation of the statistical properties of the velocity difference in an anisotropic turbulent cylinder wake at moderate Re λ is conducted by a triple hot-wire anemometer (HWA) probe. The energy spectra show a clear large scale anisotropy due to the presence of the Von Karman vortices. In spite of the low Re λ and the large scale anisotropy, the extended-self-similarity (ESS) allows location of broad scaling ranges and the calculation of the scaling exponents of the three velocity structure function components in order to examine the intermittency anomalies. More intermittent behavior of the transverse velocity components with respect to the longitudinal one is found both by ESS and by comparison of the longitudinal and transverse velocity difference probability distribution functions (PDF). Received: 12 October 1997 / Accepted: 29 April 1998  相似文献   

7.
The full energy dissipation rate and enstrophy are measured simultaneously using a probe consisting of four X-wires in the intermediate region of a cylinder wake for Taylor microscale Reynolds number in the range of 120–320. Longitudinal and transverse velocity increments are also obtained temporally using Taylor’s hypothesis. The inertial range scaling exponents indicate that the full enstrophy field has a stronger intermittency than does the full dissipation field for all the Reynolds numbers considered. The approximations of the energy dissipation rate and enstrophy based on isotropy are more intermittent than their corresponding true values. While the scaling exponents of the full energy dissipation rate remain approximately constant for different Reynolds numbers, those of the enstrophy decrease slightly and consistently with the increase of Reynolds number. It is conjectured that the scaling of the energy dissipation rate and the enstrophy may be the same when Reynolds number is extremely high, a trend that is consistent with that suggested by Nelkin (Phys Fluids 11:2202–2204, 1999; Am J Phys 68:310–318, 2000).  相似文献   

8.
Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluctuations in negative transport region are suppressed, and their probability distributions are far from Gaussian. Besides, the skewness factors attain their negative maxima at the position of the maximum mean velocity, whereas the flatness factors attain their positive maxima at the same position. The project supported by the National Natural Science Foundation of China (19872043)  相似文献   

9.
Horizontal oil-water two-phase flows are frequently encountered in many industrial processes but the understanding of the dynamic behavior underlying the different flow patterns is still a challenge. In this study, we first conduct experiments of horizontal oil-water flows in a small diameter pipe, and collect the fluctuation signals from conductance probes. The multi-scale power-law correlations of the oil-water flow structures are investigated using detrended fluctuation analysis (DFA) based on the magnitude and sign decomposition of the raw signals. The analysis reveals the scaling behavior of different flow structures; five conductive flow patterns are indentified based on the magnitude and sign scaling exponents at different time scales. In addition, the transfer entropy (TE) in a state space is used to study the information transferring characteristics of the oil-water mixture flowing past a conductance cross-correlation velocity probe. The results of TE indicate that the transferring information depends on the flow conditions and can be used to show changes in the flow patterns.  相似文献   

10.
In this paper four families of orthogonal wavelets are applied to analyze the turbulent counter gradient transport phenomena in fully developed asymmetric channel flows. The results show that: (1) In the instance of counter gradient transport, the principal scale of the coherent structure is responsible for the strong local counter gradient transport; (2) Counter gradient transport phenomena have a strong effect on the intermittency of turbulence; (3) Non-Gaussian part of the principal coherent structure is essential for counter gradient transport phenomena.The project supported by the National Natural Science Foundation of China (10272071, 10472063)  相似文献   

11.
A global stability study of a divergent channel flow reveals features not obtained hitherto by making either the parallel or the weakly non-parallel (WNP) flow assumption. A divergent channel flow is chosen for this study since it is the simplest spatially developing flow: the Reynolds number is constant downstream, and for a theoretical Jeffery?CHamel flow, the velocity profile obeys similarity. Even in this simple flow, the global modes are shown to be qualitatively different from the parallel or WNP. In particular, the disturbance modes are often not wave-like, and the local scale, estimated from a wavelet analysis, can be a function of both streamwise and normal coordinates. The streamwise variation of the scales is often very different from the expected linear variation. Given recent global stability studies on boundary layers, such spatially extended modes which are not wave-like are unexpected. A scaling argument for why the critical Reynolds number is so sensitive to divergence is offered.  相似文献   

12.
苏锋  张涛  姜楠 《实验力学》2006,21(3):271-277
通过在固壁表面的平板湍流边界层沿流向平行放置若干通电加热的金属细丝,在平板表面形成沿展向周期性分布的温度场,利用该温度场引起的空气热对流,在湍流边界层近壁区域产生一组沿湍流边界层展向周期分布的流向涡结构。对壁湍流小尺度结构标度律统计特性的研究表明,金属丝加热后形成的规则流向涡结构将壁湍流各种尺度湍涡结构不规则的脉动有序地组织起来,增强了湍流小尺度结构的层次结构相似性,减小了壁湍流中小尺度结构的间歇性和奇异性,抑制了壁湍流中奇异的湍涡结构。  相似文献   

13.
We study the ability of two scaling exponents to describe the mechanical properties of swollen elastomers. Swelling effects on the Young's modulus and osmotic pressure of swollen elastomers at equilibrium swelling are investigated using literature data and the Flory–Rehner free energy function. An extended model is developed by introducing two scaling exponents into elastic strain energy functions that are separated into deviatoric and volumetric components. This extended model satisfactorily reproduces the two different swelling effects, and also predicts swelling-induced rupture. The predicted tendency readily explains experimental observations well, i.e., swelling-induced rupture occurs when small extensions are applied in good solvents, and elucidates the mechanism of swelling-induced rupture of elastomers.  相似文献   

14.
姜楠  舒玮 《实验力学》1997,12(3):342-346
本文用子波变换检测了刻画壁湍流脉动信号自相似性的局部标度指数,研究了不同尺度的湍流结构的自相似性,发现在湍流边界层猝发过程中,喷射和扫掠发生时刻小尺度脉动速度信号的局部标度指数为负值,说明在大尺度猝发事件发生的时刻小尺度结构具有奇异的自相似性,在猝发过程中其作用不仅仅是对湍能的耗散.  相似文献   

15.
The empirical mode decomposition (EMD) is used to study the scale properties of turbulent transport and coherent structures based on velocity and temperature time series in stably stratified turbulence. The analysis is focused on the scale properties of intermittency and coherent structures in different modes and the contributions of energy-contained coherent structures to turbulent scalar counter-gradient transport (CGT). It is inferred that the velocity intermittency is scattered to more modes with the development of the stratified flow, and the intermittency is enhanced by the vertical stratification, especially in small scales. The anisotropy of the field is presented due to different time scales of coherent structures of streamwise and vertical velocities. There is global counter-gradient heat transport close to the turbulence-generated grid, and there is local counter-gradient heat transport at certain modes in different positions. Coherent structures play a principal role in the turbulent vertical transport of temperature.  相似文献   

16.
We performed an investigation on spatial features of the Convective Boundary Layer (CBL) of the atmosphere, which was simulated in a laboratory model and analyzed by means of image analysis techniques. This flow is dominated by large, anisotropic vortical structures, whose spatial organization affects the scalar transport and therefore the fluxes across the boundary layer. With the aim of investigating the spatial structure and scaling in the Convective Boundary Layer, two-dimensional velocity fields were measured, on a vertical plane, by means of a pyramidal Lucas–Kanade algorithm. The coherent structures characterizing the turbulent convection were educed by analyzing the Finite-Time Lyapunov Exponent fields, which also revealed interesting phenomenological features linked to the mixing processes occurring in the Convective Boundary Layer. Both velocity and vorticity fields were analyzed in a scale-invariance framework. Data analysis showed that normalized probability distribution functions for velocity differences are dependent on the scale and tend to become Gaussian for large separations. Extended Self Similarity holds true for velocity structure functions computed within the mixing layer, and their scaling exponents are interpreted well in the phenomenological framework of the Hierarchical Structure Model. Specifically, β parameter, which is related to the similarity between weak and strong vortices, reveals a higher degree of intermittency for the vertical velocity component with respect to the horizontal one. On the other hand, the analysis of circulation structure functions shows that scaling exponents are fairly constant in the lowest part of the mixed layer, and their values are in agreement with those reported in Benzi et al. (Phys Rev E 55:3739–3742, 1997) for shear turbulence. Moreover, the relationship between circulation and velocity scaling exponents is analyzed, and it is found to be linear in the bottom part of the mixing layer. The investigation of the CBL spatial features, which has seldom been studied experimentally, has important implications for the comprehension of the mixing dynamics, as well as in turbulence closure models.  相似文献   

17.
关于湍流标度律的争鸣   总被引:1,自引:0,他引:1  
钱俭 《力学进展》2001,31(3):405-416
研究湍流结构函数的标度律。实验或数值模拟得到的湍流结构函数的标度指数是奇异的。很多学者认为:这一实验事实否定Kolmogorov1941年(K41)提出的正常标度律,各向同性湍流惯性区的标度律是奇异的。近年来作者发表一系列文章,提出不同的观点:由于有限雷诺数效应,有限雷诺数湍流的标度指数不等于真正的惯性区标度指数,湍流结构函数的标度指数的实验数据并不否定K41正常标度律,各向同性湍流惯性区的标度律可能是正常的。惯性区奇异标度律和正常标度律对应的湍流物理本质是完全不同的,因而研究解决这个争论具有重要的意义。   相似文献   

18.
This paper presents a three-dimensional autonomous Lorenz-like system formed by only five terms with a butterfly chaotic attractor. The dynamics of this new system is completely different from that in the Lorenz system family. This new chaotic system can display different dynamic behaviors such as periodic orbits, intermittency and chaos, which are numerically verified through investigating phase trajectories, Lyapunov exponents, bifurcation diagrams and Poincaré sections. Furthermore, this new system with compound structures is also proved by the presence of Hopf bifurcation at the equilibria and the crisis-induced intermittency.  相似文献   

19.
壁湍流边界层奇异标度律的实验研究   总被引:3,自引:0,他引:3  
夏振炎  姜楠  王振东  舒玮 《实验力学》2005,20(4):532-538
采用热线风速仪对平板湍流边界层的流向速度进行测量,用速度结构函数研究不同尺度结构标度律的变化规律,结果显示小尺度区的概率密度曲线尾部明显偏离高斯型,说明高幅值间歇性事件占的份额较多;惯性子区的曲线向高斯型靠近,间歇性事件所占份额减少;大尺度结构的曲线趋于高斯型,间歇性事件所占份额最小。在耗散区、惯性子区和较大的尺度结构区存在大小不同的绝对标度指数,越靠近壁面这些区域的标度指数均越偏离p/3而逐渐变小。绝对标度指数与边界层位置有关,在缓冲层各阶标度指数与线性标度律偏差很大,显示较强的奇异性,当过渡到对数层及外区,标度指数逐渐增大,接近均匀各向同性湍流的状态。缓冲层、对数层及外区具有各异的绝对标度指数增长率,与各层的不同湍流结构特征和运动形式有关。  相似文献   

20.
An intermittency transport equation is developed in this study to model the laminar-turbulence boundary layer transition at supersonic and hypersonic conditions. The model takes into account the effects of different instability modes associated with the variations in Mach numbers. The model equation is based on the intermittency factor γ concept and couples with the well-known SST kω eddy-viscosity model in the solution procedures. The particular features of the present model approach are that: (1) the fluctuating kinetic energy k includes the non-turbulent, as well as turbulent fluctuations; (2) the proposed transport equation for the intermittency factor γ triggers the transition onset through a source term; (3) through the introduction of a new length scale normal to wall, the present model employs the local variables only avoiding the use of the integral parameters, like the boundary layer thickness δ, which are often cost-ineffective with the modern CFD methods; (4) in the fully turbulent region, the model retreats to SST model. This model is validated with a number of available experiments on boundary layer transition including the incompressible, supersonic and hypersonic flows past flat plates, straight/flared cones at zero incidences, etc. It is demonstrated that the present model can be successfully applied to the engineering calculations of a variety of aerodynamic flow transition with a reasonably wide range of Mach numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号