首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly[(glycidyl methacrylate)-co-(glycerol monomethacrylate)]-grafted magnetic microspheres were prepared by graft random copolymerization via ATRP from polymer microspheres with dispersed Fe(3)O(4) nanoparticles. Penicillin G acylase (PGA) was immobilized onto the polymer brush-grafted magnetic microspheres. The immobilized PGA prepared with initial glycidyl methacrylate/glycerol monomethacrylate ratios of 40/60 to 60/40 possessed higher catalytic activity than that prepared with higher proportions of glycidyl methacrylate in the initial monomer mixture. The immobilized PGA showed high thermal stability and enhanced tolerability to the pH variance.  相似文献   

2.
Immobilized penicillin G acylase (PGA) as an important industrial catalyst can catalyze penicillin G potassium (PG) to 6‐aminopenicillanic acid (6‐APA). 6‐APA is an important intermediate for semisynthetic penicillin drugs, which occupies a huge market space in the anti‐inflammatory field; as a result, immobilized PGA occupies a huge market space in the pharmaceutical field. However, at present, there are different degrees of defects in the preparation and production process of immobilized PGAs on the market because of the huge demand; therefore, the performance of immobilized PGA and its productivity will bring huge economic benefits to enterprises. Therefore, research on immobilized PGA has always been a focus. This review first introduces the source, classification, structure, and catalytic mechanism of PGA and then studies the development of immobilization methods, immobilized carriers, reaction media, enzyme activity regeneration, and reactors of immobilized PGA in recent years.  相似文献   

3.
4.
<正>Penicillin G acylase(PGA) was immobilized on the magnetic hydrophilic polymer microspheres with average pore size of 17.1 nm,specific surface area of 128.2 m~2/g and saturate magnetization of 6.4 emu/g.The 96.7%ampicillin yield with 1.60 of the synthesis/hydrolysis(S/H) ratio from 6-aminopenicillanic acid(6-APA) and D-(-)-alpha-phenylglycine methyl ester(D-PGME) can be achieved using the resultant magnetic biocatalyst in ethylene glycol,where only 82.1%yield with 1.40 of the S/H ratio was obtained using the free PGA under the identical reaction conditions.The immobilized PGA can be separated magnetically and recycled for five times without obvious loss of its catalytic activity.  相似文献   

5.
We presenta kinetic model for the synthesis of amoxicillin from p-hydroxyphenylglycine methyl ester and 6-aminopenicillanic acid, catalyzed by penicillin G acylase immobilized on agarose, at 25°C. Michaelis-Menten kinetic parameters (with and without inhibition) were obtained from initial velocity data (pH 7.5 and 6.5). Amoxicillin synthesis reactions were used to validate the kinetic model after checking mass transport effects. A reasonable representation of this system was achieved under some operational conditions, but the model failed under others. Nevertheless, it will be useful whenever a simplified model is required, e.g., in model-based control algorithms for the enzymatic reactor.  相似文献   

6.
A novel application of organically modified silicates for covalent immobilisation of penicillin G acylase is reported. The immobilisation is efficient and the enzymatic preparation shows high specific activity and thermal stability. The technique opens new perspectives for the preparation of innovative tailor-made supports matching specific requirements of enzymatic processes.  相似文献   

7.
The novel di-functional magnetic nanoflowers (DMNF) which had both epoxy groups and hydrophilic catechol as well as phthaloquinone groups capable of covalently coupling of penicillin G acylase (PGA) were characterized by scanning electron microscopy, transmission electron microscope (TEM), vibrating sample magnetometer, N2 adsorption, and so on. The studies showed that DMNF possessed “hierarchical petal” structure of nanosheets had specific saturation magnetization of 39.7 emu/g and average pore diameter of 25.4 nm as well as specific surface area of 17.28 m2/g. For hydrolysis of penicillin G potassium catalyzed by the PGA immobilized on DMNF with enzyme loading of 106 mg/g-support, its apparent activity reached 2,667 U/g, which benefited from the “hierarchical petal” and large pore structure of the magnetic DMNF leading to high enzyme loading and fast diffusion of substrate molecules to the immobilized PGA to reaction. The apparent activity of the immobilized PGA could keep 2,408 U/g (above 90% of its initial activity) after repeating use for 10 cycles. The magnetic immobilized PGA exhibited excellent operational stability due to covalently coupling of the enzyme molecules between the support by covalent interaction of the amino groups of PGA and the reactive groups of epoxy, catechol, and phthaloquinone groups on DMNF. Furthermore, the PGA displayed good acid and alkaline resistance as well as thermal stability by immobilization using DMNF.  相似文献   

8.
青霉素G酰化酶(PGA)是一种重要的工业生物催化剂,常用于以青霉素G为底物生产7-氨基去乙酰氧基头孢烷酸(7-ADCA)和6-氨基青霉烷酸(6-APA)等半合成β-内酰胺类抗生素.然而,PGA较差的稳定性和可重复使用性能限制了其在工业上的广泛应用.因此,将PGA固定在固体载体上是很有必要的,可以形成一种可重复使用的高性能的多相催化剂.用于生物酶固定化的良好载体应具备以下条件:(1)载体表面具有可用于与生物酶多点结合的高密度的官能团;(2)载体具有较大的比表面积以固定更多的生物酶.通常情况下,可以通过减小载体的粒径来增加其比表面积,然而,小粒径的载体很难从反应混合液中分离出来,造成固定化酶回收使用困难.为了将聚合物微球的优异固定化性能与磁性纳米粒子的独特顺磁性结合起来,我们制备了一种含环氧基团的顺磁性聚合物微球作为PGA的固定化载体.但由于Fe_3O_4纳米颗粒具有较高的表面能,在反相悬浮聚合反应过程中容易团聚成大颗粒,从而导致制备的顺磁性聚合物微球的磁体含量、表面形貌和粒径分布存在差异.此外,Fe_3O_4纳米颗粒与聚合反应单体之间的相容性不好,使得部分磁性颗粒不能很好地包埋于聚合物微球内部,影响固定化酶的活性和操作稳定性.本文以N,N′–亚甲基双丙烯酰胺为交联剂,以甲基丙烯酸缩水甘油酯和烯丙基缩水甘油醚为功能性单体,用反相悬浮聚合方法在SiO_2包覆的Fe_3O_4纳米颗粒表面成功制备出含环氧基团的顺磁性聚合物微球.用SEM,FT-IR,XRD,VSM和低温氮气吸附等手段对含环氧基团的顺磁性聚合物微球进行了表征.研究了SiO_2对Fe_3O_4纳米颗粒的包覆和Fe_3O_4/SiO_2纳米颗粒的数量对于固定化酶的初始活性和操作稳定性的影响.SiO_2在反相悬浮聚合过程中发挥重要作用,用SiO_2对Fe_3O_4纳米颗粒进行亲水性改性,有效改善了Fe_3O_4纳米颗粒与聚合反应单体的相容性,将其引入反相悬浮聚合体系中,可以制备得到球形度好、粒径分布均匀和超顺磁性的含环氧基团的顺磁性聚合物微球,其中当Fe_3O_4/SiO_2纳米颗粒的质量比为7.5%时制备的含环氧基团的顺磁性聚合物微球具有最好的PGA固定化性能.PGA通过其活性非必需侧链基团–氨基与顺磁性聚合物微球表面的环氧基团的共价结合来制备顺磁性固定化酶,该固定化PGA的初始活性为430 U/g(wet),在外加磁场的作用下容易回收使用,重复使用10次后可保留99%的初始活性,具有良好的热稳定性和酸碱稳定性,具有较好的工业应用前景.  相似文献   

9.
Immobilization of penicillin acylase in porous beads of polyacrylamide gel   总被引:2,自引:0,他引:2  
A procedure is described for the immobilization of benzylpenicillin acylase from Escherichia coli within uniformly spherical, porous polyacrylamide gel beads. Aqueous solutions of the enzyme and sodium alginate and of acrylamide monomer, N,N'-methylene-bis-acrylamide, N,N,N,N'-tetramethylethylenediamine (TEMED) and sodium alginate are cooled separately, mixed, and dropped immediately into ice-cold, buffered calcium formate solution, pH 8.5, to give calcium alginate-coated beads. The beads are left for 30-60 min in the cold calcium formate solution for polyacrylamide gel formation. The beads are then treated with a solution of glutaraldehyde and the calcium alginate subsequently leached out with a solution of potassium phosphate. Modification of the native enzyme with glutaraldehyde results in a slight enhancement in the rate of hydrolysis of benzylpenicillin at pH 7.8 and 0.05M substrate concentration. The enzyme entrapped in porous polyacrylamide gel beads shows no measurable diffusional limitation in stirred reactors, catalyzing the hydrolysis of the substrate at a rate comparable to that of the glutaraldehyde-modified native enzyme. The immobilized enzyme preparation has been used in batch mode over 90 cycles without any apparent loss in hydrolytic activity.  相似文献   

10.
Penicillin acylase ofE. coli NCIM 2400 has been purified to homogeneity using a combination of hydrophobic interaction chromatography and DEAE-cellulose treatment. A variety of substituted matrices were synthesized using D- or DL-phenylglycine, norleucine, ampicillin, or amoxycillin as ligands, all of which retained penicillin acylase at high concentrations of ammonium sulfate or sodium sulfate. The enzyme could be eluted nonbiospecifically by buffer of lower ionic strength with over 95% recovery of the activity. Ammonium chloride, ammonium nitrate, sodium chloride, sodium nitrate, and potassium chloride were ineffective in either adsorption or elution of the enzyme on these columns. Further purification of this partially pure enzyme with DEAE-cellulose at pH 7.0–7.2 yielded an enzyme preparation of very high purity according to electrophoretic and ultracentrifugal analyses, its specific activity being as high as 37 U/mg protein. The purifiedf enzyme has a molecular weight of 67,000 a sedimentation coefficient of 4.0S, and resolves into two forms upon isoelectric focusing. Overall recoveries ranged between 75 and 85%. Ease of operation, high recoveries, high purity of the enzyme and prolonged reuse of the conjugates make the process economically feasible and possibly of great commercial importance.  相似文献   

11.
Escherichia coli ATCC 11105 containing the periplasmic penicillin G acylase was entrapped within a copolymer of methacrylamide andN,N’- methylenebisacrylamide. A solution of monomer that was made up from methacrylamide andN,N’-methylenebisacrylamide dissolved in buffer was mixed with lyophilized cells and ammonium persulfate. This suspension was then pumped drop by drop into in soybean oil supplemented with 0.06% (v/v) 3-(dimethylamino)-propionitril. During submerging in the oil phase, the droplets were hardened and induced to polymerize within the droplets. Particles with a volume ranging from 0.013–0.017 mL per bead containing a biomass concentration up to 38.0 g/L were prepared. The optimal condition for the deacylation of penicillin G to 6-aminopencillanic acid (6-APA) catalyzed by the immobilized whole-cell penicillin G acylase was found to be 45‡C and pH 8.0. Product inhibition of this enzyme by 6-APA could be eliminated by controlling pH value at 8 during the course of penicillin G hydrolysis using a pH-stat. Conversion determined by the pH-stat method were 0.3% higher than that by p-dimethylaminobenzaldehyde method. Cell concentration in the matrix was found to be an important factor influencing the maximum velocity and the specific activity retained in the matrix. A kinetic model, in which the mass transfer resistances as a result of external film mass transfer and pore diffusion were assumed to be negligible, could properly describe the hydrolysis of penicillin G by the cells entrapped within the polymethacylamide beads.  相似文献   

12.
In this work, the relationships between catalytic performances of penicillin G acylase (PGA) and the molar ratio of carrier, thermo‐sensitive tri‐block polymer, poly (N,N‐diethylacrylamide‐b‐ β‐hydroxyethyl methacrylate‐b‐glycidyl methacrylate) (PDEA‐b‐PHEMA‐b‐PGMA) were studied firstly, and result documented the optimal molar ratio was nDEA:nHEMA:nGMA = 100:47:24, which presented a suitable lower critical solution temperature (LCST) of 35°C and the activity retention ratio of 80.62% (±0.50%). Based on the suitable carrier, immobilization conditions were investigated and optimized. When pH of solution, concentration of PGA, immobilized time, and immobilization temperature were 8.0, 1/10 (m/v), 16 hours, and 36°C, respectively, enzyme loading capacity (L), enzyme activity (Ea), and activity retention ratio (Ar) of PGA arrived at the highest value of 21 223 U, 16 199 U/g, and 93.50% (±0.50%), respectively. Besides, the response rate (Rr) of immobilized PGA was the same as free PGA, the reusable stability (Rs) was 77.00% (±1.00%) after using for 11 times, which indicated that the carrier has better compatibility with L, Ar, Rs, and Rr.  相似文献   

13.
The effects of five polyethylene glycol (PEG) compounds of different molecular weight on the thermal stability of penicillin G acylase (PGA) obtained from a mutant ofEscherichia coli ATCC 11105 have been investigated. The molecular weights of PEG compounds were 400, 4000, 6000, 10,000, and 15,000. The thermal inactivation mechanisms of both native and PEG-containing PGA were considered to obey first order inactivation kinetics during prolonged heat treatments. Optimal concentrations of PEGs at molecular weights of 400,4000, 6000,10,000, and 15,000 were found to be 250,150,150,100, and 50 mM, respectively. The greatest enhancement of thermostability was observed with PEG 4000 and PEG 6000, as a nearly 20-fold increase above 50°C. PGA showed almost the same temperature activity profile and optimal temperature values both in the presence and absence of PEG. The addition of PEGs did not cause any change in the optimal temperature value of PGA, but the parametersV m ,K m , the activation energy, and thek cat values of enzyme were markedly decreased because of the mixed inhibition by PEG compounds. The type of inhibition was found to be hyperbolic uncompetitive.  相似文献   

14.
高分子载体材料对青霉素酰化酶的固定化作用   总被引:3,自引:0,他引:3  
介绍了天然高分子材料和合成高分子材料对青霉素酰化酶的固定化作用,着重讨论了高分子材料的制备、性质及其表面修饰对固定化酶活性和使用稳定性的影响。  相似文献   

15.
 以 Span-60 和 Tween-20 为复合分散剂, 以 N,N′-亚甲基双丙烯酰胺为交联剂, 以甲基丙烯酸缩水甘油酯和烯丙基缩水甘油醚为功能性单体, 用反相悬浮聚合技术成功制备了含环氧基团的聚合物载体, 并用红外光谱和低温氮吸附对聚合物载体进行了表征. 以 Span-60 和 Tween-20 为复合分散剂, 替代原有的 Span-60 和硬脂酸钙复合分散剂, 大幅度减少了后处理过程中所需的时间和溶剂用量, 使固定化青霉素酰化酶的活性从 215 U/g 提高到 320 U/g. 与游离酶相比, 该固定化酶具有较好的操作稳定性, 在 pH = 5~11 和不高于 50 oC 的环境中具有较好的稳定性. 固定化酶的水解反应动力学过程与游离酶相同, 均遵循米氏反应动力学, 而且活性与底物浓度密切相关. 当底物浓度为 6.5% 时, 固定化酶的活性最高, 达到 353 U/g.  相似文献   

16.
青霉素酰化酶在甲基丙烯酸缩水甘油酯共聚物上的固定化   总被引:6,自引:0,他引:6  
 用共价键合法将青霉素酰化酶固定化在珠状多孔的甲基丙烯酸缩水甘油酯(GM)共聚物上,研究了固定化反应时间、温度、pH值和酶液用量对固定化青霉素酰化酶的表观活性、表观偶联效率、活性回收及稳定性的影响.将GM共聚物载体加入到磷酸缓冲液(0.1mol/L,pH10.8)与青霉素酰化酶液(每克干载体用酶液1ml)的混合溶液中,在30℃下反应72h,单位质量(干重)固定化酶的表观活性为348U/g,表观偶联效率为66.7%,活性回收为31.7%.  相似文献   

17.
The recently developed ‘protective plate’ method offers the possibility to include protein layers into a Langmuir–Blodgett (LB) assembly without contact of protein molecules with the air–water interface thus avoiding their denaturation. In the present work, this technique was applied for the deposition of biocatalysts with active layers of penicillin G acylase (PGA), an enzyme widely used for medicine production. Easy selection of LB and adsorbed layers resulted in the creation of appropriate environments for the preservation of PGA functions. Two structures were tested regarding such performances as the enzymatic activity value and the level of PGA detachment in aqueous solutions. It was shown that they satisfy the requirements for biocatalytic applications. The enzymatic activity of PGA monolayer incorporated into the film reached 25–30% of the activity value of the equivalent amount of protein in the solution, which is a good result for an immobilized enzyme. Further modification of the deposition procedure resulted in increasing the effective activity per unit of the substrate surface due to adsorption of a thicker protein layer in one cycle. Probably, a three-dimensional frame-like structure was formed, which allowed the substrate molecules to penetrate into the film. The enzymatic activity of such films per unit of the substrate surface was 20–25 times higher than that of the assemblies with one adsorbed monolayer. Finally, the method is proposed of biocatalytic LB assembly deposition onto flexible supports of practically unlimited length without the exposure of protein layer to air medium.  相似文献   

18.
Present communication is concerned with the application of monolayer engineering, in particular of ‘protective plate’ technique, for the fabrication of alternate-layer assemblies based on enzyme penicillin G acylase. Several structures are compared with each other. The deposited films are tested to determine the values of enzymatic activity and the level of protein detachment in aqueous solutions. As the result, the deposition procedure is found, which enables to obtain biocatalytic media with enhanced performances. The biocatalyst efficiency is proved by three independent techniques including direct yield determination with HPLC. The advantage of applied method of enzyme immobilization with respect to other techniques is demonstrated.  相似文献   

19.
Penicillin acylase (PA, EC 3.5.1.11) is used as a raw material in the production of semi-synthetic penicillins. Although there are many methods for PA purification, affinity chromatography is advantageous as it provides efficient one step purification. In this study, poly(2-hydroxyethyl methacrylate) based cryogel column containing hydrophobic N-methacryloyl-L-tryptophan (MATrp) functional monomer as a ligand was prepared. Interaction of MATrp with amino acids in PA structure is the basis of hydrophobic interaction chromatography in this study. PHEMA and PHEMATrp cryogel columns were characterized by surface area measurements, infrared spectroscopy, swelling tests, elemental analysis and scanning electron microscopy (SEM). Initial PA concentration, pH, effect of temperature, amount of ligand, flow rate, ionic strength and time on PA adsorption on PHEMATrp cryogel were investigated. Optimum pH was determined as 5.0 for PA adsorption and maximum adsorption capacity was obtained as 6.40 mg/g. It was observed that adsorption capacity increased with the increasing of temperature. Also, PA adsorption increased up to 0.25 M salt concentration and decreased in higher salt concentrations. Data obtained in this affinity system suggests that hydrophobic interactions are dominant. In the last stage of the study, PA was purified from Penicillium chrysogenum with 76.3% yield and 332.3 purification factor.  相似文献   

20.
In this paper, an efficient method was established for continuous kinetic resolution of racemic 2-aminobutanol by selective hydrolysis of N-phenylacetyl (±)-2-aminobutanol over immobilized penicillin G acylase (PGA) in a fixed-bed reactor. Several N-acylated derivatives of 2-aminobutanol were screened in batch experiments, and it was found that the hydrolysis of N-phenylacetyl (±)-2-aminobutanol proceeded smoothly in the presence of immobilized penicillin G acylase with satisfied enantioselectivity. Thus, the reaction parameters were optimized in a fixed-bed reactor. Under the optimized conditions, 39.3% conversion of N-phenylacetyl (±)-2-aminobutanol and 98.2% ee value of S-2-aminobutanol were obtained. This fixed-bed system was operated continuously for 40 h without significant decrease of enzyme activity. It has been demonstrated to be more efficient compared to the batch experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号