首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
丙酮酸分子结构与振动光谱的密度泛函理论研究   总被引:1,自引:0,他引:1  
用密度泛函方法BLYP、B3LYP和从头算Hartree-Fock(HF)方法在6-31G*基组水平上对丙酮酸分子的几何结构(甲基的重叠式和交错式两种构象)和振动光谱分别进行了优化和计算,并给出了各种频率所对应的红外强度及拉曼活性,对光谱进行了指认。结果表明:在丙酮酸分子的两种构象中,重叠式比较稳定*B3LYP计算得到的构型参数与实验结果比较一致;在振动频率的计算中,BLYP未标度力场所计算的非CH3伸缩振动基频预测值和实验值的平均绝对偏差为10.4cm-1;而HF标度力场的平均绝对偏差为17.9cm-1。说明两者的结果与实验观测频率比较吻合,但B3LYP的频率计算值偏差(38.3cm-1)较大。根据振动频率的势能分布和红外光谱强度对此分子的振动基频进行了理论归属。  相似文献   

2.
In this work, the experimental and theoretical study on molecular structure and vibrational spectra of 4-nitrotoluene are studied. The FTIR and FTRaman experimental spectra of the molecule have been recorded in the range of 4000–100 cm?1. Making use of the recorded data, the complete vibrational assignments are made and analysis of the observed fundamental bands of molecule is carried out. The experimental determinations of vibrational frequencies are compared with those obtained theoretically from ab initio HF and DFT quantum mechanical calculations using HF/6-31G (d, p), B3LYP/6-31++G* (d, p) and B3LYP/6-311++G* (d, p) methods. The differences between the observed and scaled wave number values of most of the fundamentals are very small in B3LYP than HF. The geometries and normal modes of vibrations obtained from ab initio HF and B3LYP calculations are in good agreement with the experimentally observed data. Comparison of the simulated spectra provides important information about the ability of the computational method (B3LYP) to describe the vibrational modes. The vibrations of NO2 and CH3 groups coupled with skeletal vibrations are also investigated.  相似文献   

3.
The IR and Raman spectra of aminomethylene propanedinitrile (AM) [H2N-CH=C(CN)2], (methylamino)methylene propanedinitrile (MAM) [CH3NH-CH=C(CN)2] and (dimethylamino)methylene propanedinitrile (DMAM) [(CH3)2N-CH=C(CN)2] as solids and solutes in various solvents have been recorded in the region 4000-50 cm–1. AM and DMAM can exist only as one conformer. From the vibrational and NMR spectra of MAM in solutions, the existence of two conformers with the methyl group orientedanti andsyn toward the double C=C bond were confirmed. The enthalpy difference H 0 between the conformers was measured to be 3.7±1.4 kJ mol–1 from the IR spectra in acetonitrile solution and 3.4±1.1 kJ mol–1 from the NMR spectra in DMSO solution. Semiempirical (AM1, PM3, MNDO, MINDO3) and ab initio SCF calculations using a DZP basis set were carried out for all three compounds. The calculations support the existence of two conformersanti andsyn for MAM, withanti being 7.8 kJ mol–1 more stable thansyn from ab initio and 8.6, 13.4, 11.6, and 10.8 kJ mor–1 from AM1, PM3, MNDO, and MINDO3 calculations, respectively. Finally, complete assignments of the vibrational spectra for all three compounds were made with the aid of normal coordinate calculations employing scaled ab initio force constants. The same scale factors were optimized on the experimental frequencies of all three compounds, and a very good agreement between calculated and experimental frequencies was achieved.  相似文献   

4.
Tellurocarbonyldifluoride and its Derivatives: (HeI)-Photoelectron Spectra and HF, GF as well as DFT Calculations The He(I) photoelectron spectra of tellurocarbonyldifluoride F2C=Te, its trifluormethyl derivative F3C(F)C=Te and of the ditelluretanes: 2,2,4,4-tetrafluor-1,3-ditelluretane, 2,4-difluoro-2,4-bis(trifluormethyl)-1,3-ditelluretane und und 2,4-dichloro-2,4-bis(trifluormethyl)-1,3-ditelluretane are assigned by ab initio calculations, radical cation state comparison and based on resolved vibrational fine structures.  相似文献   

5.
The rotational barriers in dimethyl acetylene (CH3CCCH3), diamino acetylene (H2NCCNH2), dihydroxy acetylene (HOCCOH), methyl trifluoro methyl acetylene (CF3CCCH3), silyl methyl acetylene (SiH3CCH3), propene, cis and trans 2-butene and ethane were studied by ab initio molecular orbital methods using various basis sets. The eclipsed structure for dimethyl acetylene and its CF3 and SiH3 analogs was found to be the most stable, as has been inferred from experimental work, and the barrier height for these compounds has been predicted. The barriers in the OH and NH2 substituted acetylenes, propene, butene and ethane were studied in order to more clearly understand the important influences in determining the barrier mechanism; specifically, the delocalized molecular orbital and Pauling VB model have been compared.  相似文献   

6.
The structures of several sulfones, including dimethyl sulfone, methyl ethyl sulfone, methyl vinyl sulfone, and diphenyl sulfone, have been fit with the MM3 force field to existing experimental data from electron diffraction and microwave spectroscopy. The vibrational spectra have also been fit for six of these compounds. The torsional parameters for the aliphatic sulfones were fit to ab initio 6-31G data. Heats of formation were also fit. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Variable temperature (–105 to –145°C) studies of the infrared spectra (3500–400 cm–1) of methylamine, CH3NH2, dissolved in liquid krypton have been recorded. From these data, the hydrogen bonding enthalpy has been determined to be 530 ± 29 cm–1 (6.34 ± 0.35 kJ/mol). The elusive 13 and 14 fundamentals, which are strongly mixed CH3 rock and NH2 twist, have been observed at 1244 and 876 cm–1, respectively. These assignments are supported by frequency predictions from ab initio MP2/6-31G(d) calculations where the predicted infrared intensities for these two vibrations are 0.054 and 0.002 km/mol. The ab initio predicted infrared spectrum compares very favorably with that observed in the krypton solution. Normal coordinate calculations have also been carried out for four other isotopomers of methylamine, CH3NHD, CH3ND2, CD3NH2, and CD3ND2 and vibrational assignments given from previously reported infrared spectra of matrix isolated samples. The Raman spectrum of these latter three isotopes, along with the normal species, have been predicted from MP2/6-31G(d) calculations and the results compared to the experimental spectra. The equilibrium structural parameters have been obtained from ab initio calculations utilizing several different basis sets with full electron correlation by the perturbation method to second order. These predicted values are compared to the previously reported experimental structural parameters.  相似文献   

8.
The infrared (3500-80 cm−1) and Raman (3500-20 cm−1) spectra of 3-fluoro-1-butyne, CH3CHFCCH, have been recorded for the gas and solid. Additionally, the Raman spectrum of the liquid has also been recorded to aid in the vibrational assignment. Ab initio electronic structure calculations of energies, geometrical structures, vibrational frequencies, infrared intensities, Raman activities and the potential energy function for the methyl torsion have been calculated to assist in the interpretation of the spectra. The fundamental torsional mode is observed at 251 cm−1 with a series of sequence peaks falling to lower frequency. The three-fold methyl torsional barrier is calculated to be 1441 ± 20 cm−1 (4.12 ± 0.06 kcal mol−1) where the uncertainty is partly due to the uncertainty in values of the V6 term. A complete vibrational assignment is proposed based on band contours, relative intensities, and ab initio predicted frequencies. Several fundamentals are significantly shifted in the condensed phases compared to values in the vapor state.  相似文献   

9.
The complete harmonic force constants of acetamide have been evaluated by ab initio calculations at the Hartree-Fock level with the 4–31G(d) basis set. The force field was scaled to compensate for the systematic overestimations of the Hartree-Fock-level force constants by empirical factors using the matrix isolation IR spectra of CH3CONH2 and CD3CONH2. A normal coordinate treatment has been carried out with the scaled force field to analyze the vibrational spectra of CH3CONH2. A normal coordinate treatment has been carried out with the scaled force field to analyze the vibrational spectra of CH3COND2, cis-CH3CONHD and trans-CH3CONHD. The effect of cis/trans isomerism of CH3CONHD on the fundamental bands was well reproduced by the calculations. The fundamental vibrations were also predicted for CD3COND2, cis-CD3CONHD and trans-CD3CONHD.  相似文献   

10.
Ab initio molecular orbital calculations have been used to study the condensation reactions of CH3? with NH3, H2O, HF and H2S. Geometry optimization has been carried out at the Hartree—Fock (HF) level with the split-valence plus d-polarization 6-31G* basis set and improved relative energies obtained from calculations which employ the split-valence plus dp-polarization 6-31G** basis set with electron correlation incorporated via Moller—Plesset perturbation theory terminated at third order (MP3). Zero-point vibrational energies have also been determined and taken into account in deriving relative energies. The structures of the intermediates CH3XH? (X = NH2, OH, F and SH) have been obtained and dissociation of these intermediates into CH2X+ + H2 on the one hand, and CH3? + HX on the other, has been examined. It is found that for those species for which the methyl condensation reaction is observed to have an appreciable rate (X = NH2 and SH), the transition structure for hydrogen elimination from CH3XH? lies significantly lower in energy than the reactants CH3? + HX (by 75 and 70 kJ mol?1 respectively). On the other hand, for those species for which the methyl condensation reaction is not observed (X = OH and F), the transition structure for H2 elimination lies higher in energy than CH3? + HX (by 6 and 87 kJ mol?1 respectively).  相似文献   

11.
The infrared (3500–40 cm−1) spectra of gaseous and solid 1-fluoro-1-methylsilacyclobutane, c-C3H6SiF(CH3), have been recorded. Additionally, the Raman spectrum (3500–30 cm−1) of the liquid has been recorded and quantitative depolarization values have been obtained. Both the axial and equatorial (with respect to the methyl group) conformers have been identified in the fluid phases. Variable temperature (−55–−100°C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 267±10 cm−1 (3.19±0.12 kJ mol−1), with the axial conformer being the more stable form and the only conformer remaining in the polycrystalline solid. A complete vibrational assignment is proposed for the axial conformer and many of the fundamentals for the equatorial conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G* and 6-311++G** basis sets at the levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

12.
The molecular structure of the pale yellow crystals of 2-(2′,4′-dinitrobenzyl)pyridine (CH2 form) and its photo induced ‘enamine’ NH tautomer (dark blue crystals) have been studied by means of vibrational spectra and ab initio calculations. The Raman spectrum of the photo-sensitive CH2 form was registered by NIR FT-Raman spectroscopy by means of the Nd:YAG laser as an excitation source. Ab initio calculations have been performed for the CH2 and NH tautomers at the Hartree-Fock level using a 6-21G** basis set. The theoretical geometrical parameters for the isolated 2-(2′,4′-dinitrobenzyl)pyridine molecule (CH2 form) are close to the literature X-ray diffraction data. According to the theory the dihedral angle between the benzene and pyridine ring planes in the NH photo induced tautomer is about 46°, the ortho-nitro group is twisted about 25° towards the benzene ring plane, whereas the para-nitro group is coplanar to the benzene ring. The assignment of the fundamental vibration frequencies of both 2-(2′,4′-dinitrobenzyl)pyridine tautomers CH2 and NH have been performed on the basis of Raman and infrared spectra and ab initio force field calculations. The computed frequencies are in coincidence with the registered ones; the mean deviations are between 23.7 and 28.5 cm−1.  相似文献   

13.
The infrared spectra (3200-50 cm–1) of gaseous and solid vinyltrichlorosilane, CH2=CH-SiCl3, have been recorded. In addition, the Raman spectrum (3200-10 cm–1) of the liquid has been recorded and quantitative depolarization values obtained. The infrared spectrum of the sample dissolved in liquid xenon (–80°C) has also been recorded. Using the experimental data and normal coordinate calculations with scaled ab initio force constants, the complete vibrational assignment is proposed. The torsional mode was observed in the infrared spectrum of the gas at 69 cm–1 and the threefold barrier of internal rotation was calculated to be 500 cm–1 (5.98 kJ/mol). Ab initio calculations have been carried out at the restricted Hartree–Fock level of the theory as well as with full electron correlation by the perturbation method to second order with different basis sets up to 6-311+G(d,p) to obtain the optimized geometries, harmonic force constants, infrared intensities, Raman activities, depolarization ratios, and vibrational frequencies. The ab initio predicted structural parameters are compared with those obtained from a previous electron diffraction study.  相似文献   

14.
The molecular structure of 1,4,7-trioxonin (2) has been optimised by ab initio MO studies for both crown and planar forms. The crown form is energetically preferred, but there is little resonance energy in the system, which is of a classical nature. The angle between the carbon and the COC planes is very similar to that known experimentally for cyclonona-1,4,7-triene (1). The calculations show that a heavy degree of mixing of the (CC)π levels with LPσo or with (CH2)sym occurs. The photoelectron spectra of both the hydrocarbon (1) and the trioxonin (2) have been assigned, on the basis of comparisons with simple molecules and by the use of ab initio calculations of single and double zeta quality.  相似文献   

15.
Using a potential-energy surface obtained in part from ab initio calculations, the H + CH3 → CH4 bimolecular rate constant at T = 300 K is determined from a Monte Carlo classical trajectory study. Representing the CH stretching potential with a standard Morse function instead ofthe ab initio curve increases the calculated rate constant by an order of magnitude. The experimental recombination rate constant is intermediate of the rate constants calculated with the Morse and ab initio stretching potentials.Two properties of the H + CH3 α CH4 potential-energy surface which significantly affect the recombination rate constant are the shape of the CH stretching potential and the attenuation of the H3CH bending frequencies. Ab initio calculations with a hierarchy of basis sets and treatment of electron correlation indicate the latter is properly described [13]. The exact shape of the CH stretching potential is not delineated by the ab initio calculations, since the ab initio calculations are not converged for bond lengths of 2.0–3.0 Å [12]. However, the form of this stretching potential deduced from the highest-level ab initio calculations, and fit analytically by eq. (2), is significantly different from a Morse function. The experimental recombination rate constant is intermediate of the rate constants calculated with the Morse and ab initio CH stretching potentials. This indicates that the actual CH potential energy curve lies between the Morse and ab initio curves. This is consistent with the finding that potential energy curves for diatomics are not well described by a Morse function [12].  相似文献   

16.
The gas-phase molecular structure of iodotrimethylsilane (ITMS) has been determined from electron diffraction data. Infrared and Raman spectra have been completely assigned. The experimental work is supported by ab initio HF and MP2 calculations for the gas-phase structure determination and DFT(B3LYP) calculations, combined with Pulay's SQM method, for the vibrational spectra data.  相似文献   

17.
The Raman (3200 to 10 cm–1) and infrared (3500 to 50 cm–1) spectra of vinyl chloroformate, H2C=CHOC(O)Cl, have been recorded for both the gas and solid. Additionally, the Raman spectrum of the liquid has been recorded, and depolarization ratios have been obtained. These data have been interpreted on the basis that the only stable conformation present at ambient temperature is thetrans-trans rotamer, where the firsttrans refers to the vinyl moiety relative to the O—CCl bond and the second to the C—Cl bond relative to the=C—O bond. Using harmonic rigid asymmetric top calculations, the infrared vapor phase contours for the C=O and the C=C stretch were predicted for thetrans-trans and for thecis-trans conformer, and were compared with experiment. For both fundamentals thetrans-trans hybrid reproduces the experimental contour, whereas thecis-trans contours fail to do so for both fundamentals. From far-infrared spectrum of the vapor obtained at 0.1 cm–1 resolution, the C(O)Cl andO-vinyl torsional fundamentals have been observed at 132 and 61 cm–1, respectively. Ther 0 structural parameters have been obtained from a combination of ab initio calculated parameters with appropriate offset values and the fit of the microwave rotational constants for the two naturally occurring chlorine isotopes. The structure, barrier to internal rotation, and vibrational frequencies have been determined from ab initio Hartree-Fock gradient calculations, using the 3-21G* and 6-31G* basis sets. These results are compared to those obtained experimentally and to similar quantities for some related molecules.  相似文献   

18.
The infrared (3500-50 cm−1) and Raman (3500-20 cm−1) spectra of 1,2-pentadiene, H2C=C=C(H)CH2CH3 (ethyl allene), have been recorded for both the gaseous and solid states. Additionally, the Raman spectrum of the liquid has been obtained with qualitative depolarization values. In the fluid phases both the cis and gauche conformers have been identified, with the gauche rotamer being the predominant form although it may not be the conformer of lowest energy. In the solid state only the cis conformer remains after repeated annealing of the crystal. The asymmetric torsion of the cis conformer is observed as a series of Q-branch transitions beginning at 103.4 cm−1 and falling to lower frequency. An estimate of the potential function governing conformer interconversion is provided. A complete assignment of the normal modes for the cis conformer is given and several of the fundamentals are assigned for the gauche rotamer. Ab initio electronic structure calculations of energies, conformational geometries, vibrational frequencies, and potential energy functions have been made to complement and assist the interpretation of the infrared and Raman spectra. In particular, the transitions among torsional energy levels for both the symmetric (methyl) and asymmetric (ethyl) motions have been calculated. The results are compared to the corresponding quantities for some similar molecules.  相似文献   

19.
The Raman (3500-30 cm−1) spectra of liquid and solid and the infrared (3500-40 cm−1) spectra of gaseous and solid 3-methyl-3-butenenitrile, CH2C(CH3)CH2CN, have been recorded. Both cis and gauche conformers have been identified in the fluid phases but only the cis form remains in the solid. Variable temperature (−55 to −100 °C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 163±16 cm−1 (1.20±0.19 kJ mol−1), with the cis conformer the more stable rotamer. It is estimated that there is 48±2% of the gauche conformer present at  25°C. A complete vibrational assignment is proposed for the cis conformer based on infrared band contours, relative intensities, depolarization ratios and group frequencies. Several of the fundamentals for the gauche conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been obtained for both rotamers by ab initio calculations employing the 6-31G(d), 6-311G(d,p), 6-311+G(d,p) and 6-311+G(2d,2p) basis sets at the levels of restricted Hartree-Fock (HF) and/or Møller-Plesset perturbation theory to the second order (MP2). Only with the 6-311G(2d,2p) and 6-311G(2df,2pd) basis sets with or without diffuse functions is the cis conformer predicted to be more stable than the gauche form. The potential energy terms for the conformational interchange have been obtained at the MP2(full)/6-311+G(2d,2p) level, and compared to those obtained from the experimental data. The results are discussed and compared to the corresponding quantities obtained for some similar molecules.  相似文献   

20.
《Chemical physics》1987,115(3):325-337
The results of ab initio self-consistent field (SCF) and configuration interaction (CI) calculations on the hydrogen bonded N2HF, N2HCl, (HCN)2 and NH3HCN complexes, using basis sets that range from double-zeta plus polarization to triple-zeta plus double polarization, are reported. The primary objective of this work has been to calculate the changes in the dipole moments and the electric field gradients (EFGs) at the quadrupolar 14N, 2H and 35Cl nuclei that are induced by H-bonding. Since the interpretation of the H-bond induced shifts requires a knowledge of the molecular dynamics in weakly H-bonded molecular complexes such as those studied in the present work, we have taken into account the effects of vibrational averaging on both the EFGs and dipole moments utilizing harmonic intermolecular force fields that were generated using ab initio SCF methods. The results of these calculations are compared with the corresponding experimental quantities that are obtained from the microwave spectra of these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号