首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enhanced third harmonic (TH) generation from Silicon-On-Insulator (SOI) planar waveguides as well as SOI photonic crystal (PhC) slabs is studied in different angular configurations, both in the visible and infrared energy ranges. In the SOI planar waveguide, the multilayer structure causes the optical properties such as TH reflection to be different from those of bulk silicon samples. This behavior is well reproduced by calculations of TH reflectance.Measurements of third-harmonic reflection and diffraction from one-dimensional PhC slabs etched in the SOI waveguide are also reported. The angular positions of TH peaks at various diffraction orders agree well with those calculated from a nonlinear grating equation. Both reflection and diffraction processes contribute to enhanced TH generation efficiency in the PhC slabs.TH reflectance measurements performed on PhC slabs in the near infrared show a resonant interaction between the incident beam and the photonic structure, dependent on the angle of incidence. This leads to a nonlinear conversion efficiency which is strongly enhanced with respect to that of the SOI waveguide, due to the excitation of strong local fields associated with the presence of photonic modes in the PhC slab.  相似文献   

2.
Ye WM  Yuan XD  Zeng C 《Optics letters》2011,36(15):2842-2844
We realize a unidirectional transmission by cascading two nonparallel gratings (NPGs) made of isotropic, lossless, and linear media. For a pair of orthogonal linear polarizations, one of the gratings is designed as a polarizer, which is a reflector for one polarization and a transmitter for the other; another grating is designed as a polarization converter, which converts most of one polarized incident wave into another polarized transmitted wave. It is demonstrated by numerical calculation that more than 85% of the incident light energy can be transmitted with less than 1% transmission in the opposite direction for linearly polarized light at normal incidence, and the relative bandwidth of the unidirectional transmission is nearly 9%. The maximum transmission contrast ratio between the two directions is 62 dB. Unlike one-way diffraction grating, the transmitted light of the NPGs is collinear with the incident light, but their polarizations are orthogonal.  相似文献   

3.
We present theoretical and experimental results of a polarization splitter device that consists of a photonic crystal (PhC) slab, which exhibits a large reflection coefficient for TE and a high transmission coefficient for TM polarization. The slab is embedded in a PhC tile operating in the self-collimation mode. Embedding the polarization-discriminating slab in a PhC with identical lattice symmetry suppresses the in-plane diffraction losses at the PhC-non-PhC interface. The optimization of the PhC-non-PhC interface is thereby decoupled from the optimization of the polarizing function. Transmissions as high as 35% for TM- and 30% for TE-polarized light are reported.  相似文献   

4.
梁彬  袁樱  程建春 《物理学报》2015,64(9):94305-094305
电子二极管的发明标志着现代电子学的诞生, 在整个人类社会中引起了科技的深刻变革. 声波是一种具有非常悠久的研究历史的经典波, 却始终被认为仅具有对称的传播形式. 若能制造出可像电子二极管控制电流般实现声波单向导通的声学器件, 显然将对整个声学研究领域产生重大影响, 具有重要的科学意义及应用价值. 第一个基于非线性媒质与声子晶体的声二极管利用非线性突破声学互易原理的局限, 首次实现了将声能流限制在单一方向上的声整流效应. 针对非线性系统转换效率低下的固有缺陷, 在线性体系内围绕声单向传播这个重要科学问题开展了一系列理论和实验研究, 设计与制备了多种具有特殊结构和性能的线性声学单向结构, 在器件的效率、带宽及尺寸方面产生了突破. 在声二极管研究的基础上, 第一个可以像电子三极管操控电流般对声流进行操控与放大的声三极管理论模型也被提出. 本文介绍了声单向传播这一新兴且富有蓬勃生机的研究领域中的主要进展.  相似文献   

5.
二维六方氮化硼(hexagonal boron nitride,hBN)材料在产生光学稳定的超亮量子单光子光源领域有着潜在应用,有望用于量子计算和信息处理平台,已成为研究热点.而光学非对称传输设备是集成量子计算芯片中的关键器件之一.本文从理论上提出了一种基于hBN材料光子晶体异质结构的纳米光子学非对称光传输器件.运用平面波展开法研究了光子晶体的能带结构与等频特性,从理论上分析了hBN异质结构中可见光波非对称传输的可行性.同时,采用时域有限差分方法研究了可见光波段异质结构的晶格常数和半径对透射光谱的影响.研究结果显示,该结构实现了在610—684 nm波长范围内TE偏振光的非对称传输,在652 nm波长处正向透射率达到0.65,反向透射率为0.006,非对称传输透射对比度高达0.98.本文提出的结构模型为基于hBN的新型纳米光子器件设计提供了新的可能性,可用于不同功能光学器件的集成设计.  相似文献   

6.
二维光子晶体的完全带隙   总被引:3,自引:2,他引:1  
为了研究二维光子晶体完全带隙的规律,采用平面波展开法模拟了4种结构二维光子晶体,在固定光子晶体周期常数a的情况下,研究完全带隙随柱半径r的变化规律.研究发现,六角晶格空气孔型光子晶体的完全带隙出现在r=0.42~0.50μm的范围,最大带隙宽度△ω1=0.08(ωa/2πc);方形晶格空气柱型光子晶体在r=0.47~0...  相似文献   

7.
Two-dimensional photonic crystals (PhC) using epitaxial ferroelectric, barium titanate (BTO) thin films as the dielectric medium were fabricated and their thermo-optical response measured and compared to theory. The nanopatterned PhC consists of a square array of air holes 300 nm deep, a period of 780 nm and area 200 × 200 μm2. The large refractive index of BTO leads to a high contrast structure that shows strong optical diffraction. Optical diffraction is analyzed along the 〈1 0〉 and 〈1 1〉 directions from phase grating measurements. The thermal tunability of BTO PhC is characterized from the attenuation of the first order diffraction. There is a 3 dB extinction ratio when the temperature increases by 120 °C, which corresponds to an increase of 0.05 in the BTO refractive index. Finite difference time domain (FDTD) technique is used to calculate the PhC band structure and the temperature dependence of the diffraction efficiency. The large change in the diffraction efficiency indicates that thermally tunable BTO PhCs may be useful as active ultra-compact photonic switches.  相似文献   

8.
Shi-Ling Li 《Optik》2013,124(24):6919-6921
A photonic crystal slab (PhC slab) which was constructed as a 2D hexagonal lattice with a finite depth was etched into an Er:LiNbO3 film waveguide. The band diagrams and transmission spectra were simulated by plane wave expansion (PWE) and the finite-difference time-domain (FDTD) method. A high refractive index contrast of 0.5 enables strong light confinement in the vertical direction and a broad band gap. The simulated transmittance spectra indicate that the stop band is determined by lattice constant. The transmission spectra along ΓM of the PhC slab with a lattice constant 500 nm show a 250-nm broad stop band in the wavelength range from 1.33 to 1.58 μm and sharp band edge.  相似文献   

9.
Results of the self-consistent comprehensive analysis of a room-temperature operation of InP-based 1300-nm AlInGaAs photonic-crystal (PhC) VCSELs are presented. In particular, an influence of PhC parameters on thermal effects within VCSEL volume and its emission wavelength are analysed. The PhC has been found to introduce a number of opposite effects including a possible light leakage through PhC holes. From one side, PhC holes make more difficult heat-flux extraction from VCSEL volume leading to higher temperature increases within it. But, from the other side, a properly manufactured PhC creates an efficient radial confinement mechanism for VCSEL radiation field. It enhances an interaction between the field and the active-region carriers leading to a decrease in both the VCSEL lasing threshold and temperature increases. Seemingly both effects may similarly affect VCSEL operation, but our analysis revealed, that thermal properties of the PhC VCSEL are mainly dependent on an efficient confinement of its radiation field within the active region impeding a mode leakage through PhC holes, whereas an importance of deterioration of heat-flux extraction from VCSEL volume is much less essential. The wavelength shift induced by a change of PhC parameters has been found not to exceed 4×10−3 μm.  相似文献   

10.
A rigorous analysis and design of efficient coupling from photonic crystal (PhC) waveguides into conventional dielectric waveguides is reported. Closed-form expressions for the reflection and transmission matrices that completely characterize the scattering that occurs at the interface are derived based on an eigenmode expansion technique and a Bloch basis. Analytic expressions are used to analyze the reflection into PhC waveguides. We obtain that negligible reflection can be achieved by choosing a certain interface within a PhC unit cell. Furthermore, analytic expressions are used to design a novel and compact coupler structure in order to achieve high coupling efficiency when broad dielectric waveguides are considered. Thereby, transmission efficiencies near 100 from the fundamental guided Bloch mode into the fundamental waveguide mode are achieved.  相似文献   

11.
In two earlier papers a numerically stable solution of the stationary Schrödinger equation for coupled channels was presented. The Schrödinger function and its first derivative were expressed in terms of two matrices: A so-calledlocal reflection matrix (LORE) and aninverse local transmission matrix (INTRA). These matrices obey very simple boundary conditions: They approach asymptotically zero (one) on one side of the reaction path and the reflection (transmission) matrix on the other side. Hence by propagating both matrices along the reaction path one can determine directly the observable scattering matrix elements without ever having to calculate wave functions. On the other hand it is often useful to know the wave functions, for instance in order to interpret scattering data in terms of flow patterns etc. Although the relation between theINTRA-LORE and the wave function is simple, a straight forward calculation is not possible. It would involve an inversion of theINTRA which is numerically ill behaved. In this paper we describe a numerically stable method of computing the wave function and illustrate by two examples of surface reactions.Dedicated to Herbert Wagner on the occasion of his 60th birthday. One of the authors (W.B.) also recalls with great pleasure the stimulating discussions he had with his first graduate student  相似文献   

12.
Photonic crystals (PhCs) have attracted much attention during the last decade as a solution to overcome the low extraction efficiency of as‐grown light‐emitting diodes (LEDs). In this review we describe the underlying physics and summarize recent results obtained with PhC LEDs. Here, the main focus is on diffracting PhC. In order to quantify the benefit from the incorporation of PhCs for diffracting light a comparison by simulations between a PhC LED and a standard state‐of‐the‐art LED is carried out. Finally, the impact of the PhC on the LEDs emission characteristics will be discussed with respect to étendue‐limited applications.  相似文献   

13.
We have investigated both theoretically and experimentally the spectral behavior and the transmission and reflection performance of a photonic-crystal (PhC) mode converter upon an InP substrate. This taper exhibits 70% transmission efficiency on an 80-nm bandwidth when it couples a ridge access guide to a strongly confined single-missing-row PhC guide. Such a taper design included in a PhC bend contributes a large benefit to the overall transmission budget of the PhC-based link.  相似文献   

14.
We demonstrate a holographic approach for easy and large-area fabrication of 3D photonic crystal (PhC) microstructures in a polymer-dispersed liquid crystal (PDLC) by applying a single top-cut hexagonal prism and a seven-beam interference system. Based on the expected photonic band gap of the photonic crystal, the prism parameters are designed and optimized. For example, a prism with a height h=3.73 cm and a cross angle α=66° between the side face and the base is used to fabricate 3D PhC hexagonal symmetrical structures in PDLCs. A good agreement is obtained between the theoretical calculation of the interference intensity and morphological structures. On the other hand, far-field diffraction patterns and electrical switching characteristics are also investigated. PACS 42.15.Eq; 42.40.Eq  相似文献   

15.
In article a two-dimensional photonic crystal (PhC) is considered and modelled as a new generation antireflection coating for optoelectronic devices. Traditional antireflective coatings (ARCs) reduce the reflection of the radiation only – the new generation of antireflective coatings should affect the distribution of the radiation also. Such functionality can be provided by the two-dimensional PhC which reduce the reflection and scatter transmitted light. Prior to the fabrication, the PhCs should be designed and analysed. Results of the analysis should provide quantitative means for choice of materials and design solutions. In work, we analyse the electromagnetic field distribution as Poynting vectors inside the materials of optoelectronic devices, in order to investigate the possibility of improving the construction of future optoelectronic devices. Furthermore, we calculate the reflection and transmission of that ARC. It’s a complex optic analysis of new generation of ARC. The numerical analysis has been performed with the FDTD method in Lumerical Software. In work, we consider the two-dimensional photonic crystal on the top surface of optoelectronic structures. We compared the results with the traditional ARC from these same parameters as PhC: thickness and material. As an example, we presented the application of modelled, photonic crystal, thin-film, GaAs solar cells with PhC on top. The efficiency of this solar cell, using the photonic crystal, was improved by 6.3% over the efficiency of this same solar cell without PhC. Thus, our research strongly suggests that the unique properties of the photonic crystal could be used as a new generation of ARC.  相似文献   

16.
In this paper the analysis of multiple reflections in photonic crystal (PhC) multimode interference (MMI) couplers using eigen-mode expansion method is presented. The analysis is conducted on a hybrid PhC structure which consisted of 1-D PhC multimode waveguide sandwiched between 2-D PhC input/output waveguides. In PhC multimode waveguide, where the mechanism of wave confinement is not due to total internal reflection but due to photonic bandgap properties, the reflectivity at 2-D PhC facet wall would be very large for all the guided modes in the waveguide when ever the image formed due to MMI effect does not coincides with the output access waveguide.  相似文献   

17.
It is shown that a smooth metal film (or a plasma layer) can be made transparent for an electromagnetic wave when two identical subwavelength diffraction gratings are placed on both sides of the film. The electromagnetic wave transmission through the metal film is caused by excitation of evanescent surface waves (plasmons) and their transformation into propagating waves at the gratings. A model which is developed analytically shows that the problem of the wave transmission is physically equivalent to the problem of excitation of two coupled resonators of evanescent waves which are formed at the two film surfaces.  相似文献   

18.
Li XF  Ni X  Feng L  Lu MH  He C  Chen YF 《Physical review letters》2011,106(8):084301
Nonreciprocal wave propagation typically requires strong nonlinear materials to break time reversal symmetry. Here, we utilized a sonic-crystal-based acoustic diode that had broken spatial inversion symmetry and experimentally realized sound unidirectional transmission in this acoustic diode. These novel phenomena are attributed to different mode transitions as well as their associated different energy conversion efficiencies among different diffraction orders at two sides of the diode. This nonreciprocal sound transmission could be systematically controlled by simply mechanically rotating the square rods of the sonic crystal. Different from nonreciprocity due to the nonlinear acoustic effect and broken time reversal symmetry, this new model leads to a one-way effect with higher efficiency, broader bandwidth, and much less power consumption, showing promising applications in various sound devices.  相似文献   

19.
 采用PSPICE软件,以PW级Z箍缩驱动源指数传输线为例,模拟分析了用有限多段分段阶跃变阻抗传输线序列模拟连续指数变阻抗传输线时,直角波、半周期正弦、全周期正弦平方等入射脉冲的电压和功率传输效率与分段数以及脉冲参数的关系,并计算了水电阻率对功率传输效率的影响。模拟结果表明:直角波波头的电压和功率传输效率随分段数增大而迅速趋近于理想传输线变压器的值;但对于非直角波入射脉冲而言,分段数并非越多越好,而是存在一个与传输线电长度和输入脉冲波前时间相应的最佳值;随着水电阻率下降,功率传输效率加速降低。  相似文献   

20.
We study both theoretically and experimentally the transmission of coherent light by a drop pattern (dew). The theory is based on the Kirchhoff scalar approach to diffraction. The polarization of the diffracted wave in the zero diffraction order is analyzed separately. The intensity in the zero diffraction order in the far zone is an oscillatory function of the drop size. These oscillations are observed with a pattern of water drops growing on glass. The model allows for the evolution of the important parameters of the drop pattern (average radius and surface coverage) to be obtained from the light intensity in the zero diffraction order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号