首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The paper proposes a method to solve the problem of vibrations of a radially polarized piezoelectric cylinder subject to nonstationary electric excitation. The dynamic electromechanical state of the cylinder is analyzed. The time-dependences of electric and mechanical characteristics are plotted. The distribution of these characteristics over the cross section of a short cylinder is examined. The region of end disturbances in a long cylinder is identified __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 3, pp. 73–79, March 2007.  相似文献   

4.
圆柱壳非线性振动的多重模式分析   总被引:2,自引:0,他引:2  
分析了各向同性圆柱壳的非线性自由振动,文中采用经典的非线性弹性力学方法推导了圆柱壳的大振幅运动方程,这些方程静态形式与冯.卡门的板理论方程其有同样的精度。文中采用双重富氏级主伽辽金方法近似地求解运行方程,利用谐波地和牛顿-莱福逊法妥高度耦合的非线性微分方程组,分析了模式的耦合对非线性频率的影响。  相似文献   

5.
The Bogolyubov-Mitropolsky method is used to find approximate periodic solutions to the system of nonlinear equations that describes the large-amplitude vibrations of cylindrical shells interacting with a fluid flow. Three quantitatively different cases are studied: (i) the shell is subject to hydrodynamic pressure and external periodical loading, (ii) the shell executes parametric vibrations due to the pulsation of the fluid velocity, and (iii) the shell experiences both forced and parametric vibrations. For each of these cases, the first-order amplitude-frequency characteristic is derived and stability criteria for stationary vibrations are established__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 4, pp. 75–84, April 2005.  相似文献   

6.
The transverse vibrations of a circular disk of uniform thickness rotatingabout its axis with constant angular velocity are analyzed. The resultsspecialized to the linear case of disks clamped at the center and free atthe periphery are in good agreement with those reported in the literature.The natural frequencies of spinning hard and floppy disks are obtained for various nodal diameters and nodal circles. Primary resonance is shown to occur at the critical rotational speed at which, in the linear analysis, the spinning disk is unable to support arbitraryspatially fixed transverse loads. Using the method of multiple scales, wedetermine a set of four nonlinear ordinary-differential equations governingthe modulation of the amplitudes and phases of two interacting modes. Thesymmetry of the system and the loading conditions are reflected in thesymmetry of the modulation equations. They are reduced to an equivalentset of two first-order equations whose equilibrium solutions aredetermined analytically. The stability characteristics of thesesolutions is studied; the qualitative behavior of the response isindependent of the mode being considered.  相似文献   

7.
A wide range of non-linear effects are observed in piezoceramic materials. For small stresses and weak electric fields, piezoceramics are usually described by linearized constitutive equations around an operating point. However, typical non-linear vibration behavior is observed at weak electric fields near resonance frequency excitations of the piezoceramics. This non-linear behavior is observed in terms of a softening behavior and the decrease of normalized amplitude response with increase in excitation voltage. In this paper the authors have attempted to model this behavior using higher order cubic conservative and non-conservative terms in the constitutive equations. Two-dimensional kinematic relations are assumed, which satisfy the considered reduced set of constitutive relations. Hamilton's principle for the piezoelectric material is applied to obtain the non-linear equation of motion of the piezoceramic rectangular parallelepiped specimen, and the Ritz method is used to discretize it. The resulting equation of motion is solved using a perturbation technique. Linear and non-linear parameters for the model are identified. The results from the theoretical model and the experiments are compared. The non-linear effects described in this paper may have strong influence on the design of the devices, e.g. ultrasonic motors, which utilize the piezoceramics near the resonance frequency excitation.  相似文献   

8.
Dogan  V.  Vaicaitis  R. 《Nonlinear dynamics》1999,20(1):33-53
An analytical study of nonlinear flexural vibrations of cylindrical shells to random excitation is presented. Donnell's thin-shell theory is used to develop the governing equations of motion. Thermal effects for a uniform temperature rise through the shell thickness are included in the formulation. A Monte Carlo simulation technique of stationary random processes, multi-mode Galerkin-like approach and numerical integration procedures are used to develop nonlinear response solutions of simply-supported cylindrical shells. Numerical results include time domain response histories, root-mean-square values and histograms of probability density. Comparison of Monte Carlo results is made to those obtained by statistical linearization and the Fokker–Planck equation.  相似文献   

9.
Nonlinear free vibrations of a cylindrical shell fully filled with a perfect incompressible fluid are studied. The case is examined where two natural frequencies of the shell are close __________ Published in Prikladnaya Mekhanika, Vol. 41, No. 10, pp. 127–138, October 2005  相似文献   

10.
Anlas  Gunay  Elbeyli  Ozer 《Nonlinear dynamics》2002,30(1):1-28
The nonlinear response of rectangular and square metallic plates subjectto transverse harmonic excitations is studied. The nonlinearitiesoriginate from the use of Von Kármán strains. The method of multiplescales is used to solve the system of differential equationsapproximately. Frequency response curves are presented for both squareand rectangular plates for primary resonance of either mode in thepresence of a one-to-one internal resonance. Stability of steady statesolutions is investigated. Bifurcation points and their types arediscussed.  相似文献   

11.
The nonlinear coupled vibrations of an elastic structure and liquidsloshing in a rectangular tank partially filled with liquid, are investigated.The structure on which the liquid tank is attached is vertically subjected to a sinusoidal excitation when the natural frequency of the structure is equal to twicethe natural frequency of one of the sloshing modes. In the theoretical analysis, the modal equations are derivedby taking nonlinear fluid force into account. Responses of the structure and the liquid surface are presented asresonance curves using the harmonic balance method. From this theoreticalanalysis the following predictions are obtained: (a) due to the nonlinearity of the fluid force, harmonic oscillations appear in the structure, while subharmonic oscillations occur on the liquid surface; (b) the shapes of the resonance curves markedly change depending on the liquid level; and (c) when the tuning condition is slightly deviated, amplitudemodulated motions and chaotic oscillations appear during a certain range of the excitation frequency. These were qualitatively in agreement with the experimental results.  相似文献   

12.
A mathematical model of variable structure is constructed to describe translational motions of a solid on a fixed spherical support with regard for gravity forces and Coulomb friction. Generalized velocities determining transitions from one mathematical model to another are determined. The translational acceleration amplification factor is plotted against the natural period of vibrations of the solid under damped multifrequency disturbance  相似文献   

13.
Numerical investigations are carried out on a linear structure, weakly coupled to a small nonlinear attachment. The essential nonlinearity of the attachment enables it to resonate with any of the linearized modes of the structure leading to energy pumping, i.e. passive, one-way, irreversible transfer of energy from the structure to the attachment. Different nonlinear structures (piecewise linear system, chaotic system) and efficiency of energy pumping are studied in each case in order to be able to apply it to civil engineering. As a specific application, attenuation of vibrations of a building is studied with two building models. In particular, the case of stochastic excitations is analyzed to examine if it is possible to process energy pumping when a seism occurs and an indicator of efficiency has been introduced.  相似文献   

14.
应用弹性理论和Galerkin方法建立小挠度矩形薄板在非线性弹性地基上受两对均布纵向简谐激励作用的双模态非线性动力学方程。应用多尺度法求得系统满足双频主参数共振条件的一次近似解和对应的定常解,并进行了数值计算。分析了阻尼系数、地基系数、几何参数等对系统双频主参数共振的影响。  相似文献   

15.
斜拉桥中拉索承受着多种端部激励,可激发大幅空间振动.以斜拉索为对象,探究不同端部激励间相位差对其非线性振动的影响.首先,推导斜拉索无量纲离散控制方程,引入考虑相位的三向端部激励得到一般化模型;然后,针对拉索下端存在的纵桥向、竖向和横桥向激励的两两组合,受大幅或小幅激励,及其在主共振区或主参数共振区几组因素,共计12种工况,采用数值分析法分别研究了各工况下不同激励相位差时的斜拉索稳态响应.研究发现:激励相位差能加剧与激励频率相近的面内、外模态振动;在任意端部激励组合下,激励相位差不仅可使斜拉索非线性振动出现定量变化,还可改变内共振的表现形式.面内、外激励组合下,相位差对拉索响应幅值的影响以π为周期变化,且当相位差趋于π/2 + kπ (k = 0, 1, 2…)时影响最为突出;而面内激励组合下,以2π为变化周期,当相位差为π + 2kπ (k = 0, 1, 2, …)时其对稳态幅值的影响最显著.其原因是:面外激励关于拉索所在的竖直面对称,故其本质上以π为周期;而面内激励无此对称性,仍以2π为周期.因此,有无面外激励参与决定了激励间相位差对斜拉索响应的影响规律.  相似文献   

16.
A dynamic nonlinear theory for layered shallow shells is derived by means of the von Karman-Tsien theory, modified by the generalized Berger-approximation. Moderately thick shells with polygonal planform composed of multiple perfectly bonded layers are considered. The shell edges are assumed to be prevented from in-plane motions and are simply supported. A distributed lateral force loading is applied to the structure, and additionally, the influence of a static thermal prestress, corresponding to a spatial distribution of cross-sectional mean temperature, is taken into account. In the special case of laminated shells made of transversely isotropic layers with physical properties symmetrically distributed about the middle surface, a correspondence to moderately thick homogeneous shells is found. Application of a multi-mode expansion in the Galerkin procedure to the governing differential equation, where the eigenfunctions of the corresponding linear plate problem are used as space variables, renders a coupled set of ordinary time differential equations for the generalized coordinates with cubic as well as quadratic nonlinearities. The nonlinear steady-state response of shallow shells subjected to a time-harmonic lateral excitation is investigated and the phenomenon of primary resonance is studied by means of the perturbation method of multiple scales. A unifying non-dimensional representation of the nonlinear frequency response function is presented that is independent of the special shell planform.  相似文献   

17.
The dynamic thermomechanical problem for thin-walled laminated elements is formulated based on the geometrically linear theory and Kirchhoff–Love hypotheses. A simplified model of vibrations and dissipative heating of structurally inhomogeneous inelastic bodies under harmonic loading is used. The mechanical properties of materials are described using strain-dependent complex moduli. A nonstationary vibration-heating problem is solved. The dissipative function, derived from the stationary solution, is used to specify internal heat sources. The amplitude–frequency characteristics and spatial distributions of the main field variables are studied for a sandwich beam subjected to forced vibrations  相似文献   

18.
Analytically, on the basis of asymptotic methods, the problem of the nonlinear oscillations of a charged ideal incompressible electroconductive fluid drop levitated at rest in gravity and homogeneous electrostatic fields is solved in the quadratic approximation in two small parameters: the initial drop shape deformation amplitude and the stationary eccentricity of the equilibrium drop shape in the electrostatic field. The calculations are performed in fractional powers of the nonlinear oscillation amplitude. The nonlinear corrections to the oscillation frequencies are always negative and already present in the second-order approximation due to the stationary deformation of the drop in the external fields rather than nonlinear interaction between the modes. In the case considered, in contrast to the nonlinear oscillations of a free charged drop, the expression for the generator of the nonlinearly oscillating drop shape contains terms proportional to the oscillation amplitude to the power 3/2.  相似文献   

19.
Vibrations of a parametrically and self-excited system with two degrees of freedom have been analysed in this paper. The system is constituted by two parametrically coupled oscillators characterised by self-excitation and nonlinear Duffing’s type nonlinearities. Synchronisation phenomenon has been determined near the principal resonances in the neighbourhood of the first p1 and the second p2 natural frequencies, and near the combination resonance (p1+p2)/2. Vibrations have been investigated for parameters which satisfy the internal resonance condition p2/p1=3. The existence and break down of the synchronisation phenomenon have been revealed analytically by the multiple time scale method, whilst transition of the system to chaotic motion has been carried out numerically.  相似文献   

20.
The orifice-induced wall pressure fluctuations and pipe vibrations are theoretically studied in this paper. The formulations of pipe vibration responses are deduced using acceptance integral approach. Based on the previous experimental results, the empirical equations of the power spectral density of the wall pressure fluctuations are developed, while the mathematical models of the cross-spectral density are generated when the longitudinal and circumferential correlation lengths and the convection velocity are determined. The modeling of the fluid excitations makes the finite element prediction of the orifice-induced pipe vibration responses become possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号