首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the regularity of the extremal solution of the semilinear biharmonic equation ${{\Delta^2} u=\frac{\lambda}{(1-u)^2}}We study the regularity of the extremal solution of the semilinear biharmonic equation D2 u=\fracl(1-u)2{{\Delta^2} u=\frac{\lambda}{(1-u)^2}}, which models a simple micro-electromechanical system (MEMS) device on a ball B ì \mathbbRN{B\subset{\mathbb{R}}^N}, under Dirichlet boundary conditions u=?n u=0{u=\partial_\nu u=0} on ?B{\partial B}. We complete here the results of Lin and Yang [14] regarding the identification of a “pull-in voltage” λ* > 0 such that a stable classical solution u λ with 0 < u λ < 1 exists for l ? (0,l*){\lambda\in (0,\lambda^*)}, while there is none of any kind when λ > λ*. Our main result asserts that the extremal solution ul*{u_{\lambda^*}} is regular (supB ul* < 1 ){({\rm sup}_B u_{\lambda^*} <1 )} provided N \leqq 8{N \leqq 8} while ul*{u_{\lambda^*}} is singular (supB ul* = 1){({\rm sup}_B u_{\lambda^*} =1)} for N \geqq 9{N \geqq 9}, in which case 1-C0|x|4/3 \leqq ul* (x) \leqq 1-|x|4/3{1-C_0|x|^{4/3} \leqq u_{\lambda^*} (x) \leqq 1-|x|^{4/3}} on the unit ball, where C0:=(\fracl*[`(l)])\frac13{C_0:=\left(\frac{\lambda^*}{\overline{\lambda}}\right)^\frac{1}{3}} and [`(l)]: = \frac89(N-\frac23)(N- \frac83){\bar{\lambda}:= \frac{8}{9}\left(N-\frac{2}{3}\right)\left(N- \frac{8}{3}\right)}.  相似文献   

2.
We prove a regularity result for the anisotropic linear elasticity equation ${P u := {\rm div} \left( \boldmath\mathsf{C} \cdot \nabla u\right) = f}We prove a regularity result for the anisotropic linear elasticity equationP u : = div ( C ·?u) = f{P u := {\rm div} \left( \boldmath\mathsf{C} \cdot \nabla u\right) = f} , with mixed (displacement and traction) boundary conditions on a curved polyhedral domain W ì \mathbbR3{\Omega \subset \mathbb{R}^3} in weighted Sobolev spaces Km+1a+1(W){\mathcal {K}^{m+1}_{a+1}(\Omega)} , for which the weight is given by the distance to the set of edges. In particular, we show that there is no loss of Kma{\mathcal {K}^{m}_{a}} -regularity. Our curved polyhedral domains are allowed to have cracks. We establish a well-posedness result when there are no neighboring traction boundary conditions and |a| < η, for some small η > 0 that depends on P, on the boundary conditions, and on the domain Ω. Our results extend to other strongly elliptic systems and higher dimensions.  相似文献   

3.
We study abstract evolution equations with nonlinear damping terms and source terms, including as a particular case a nonlinear wave equation of the type $ \ba{cl} u_{tt}-\Delta u+ b|u_t|^{m-2}u_t=c|u|^{p-2}u, &;(t,x)\in [0,T)\times\Omega,\\[6pt] u(t,x)=0, &;(t,x)\in [0,T)\times\partial \Omega,\\[6pt] u(0,\cdot)=u_0\in H_0^1(\Omega), \quad u_t(0,\cdot)=v_0\in L^2(\Omega),\es&; \ea $ \ba{cl} u_{tt}-\Delta u+ b|u_t|^{m-2}u_t=c|u|^{p-2}u, &;(t,x)\in [0,T)\times\Omega,\\[6pt] u(t,x)=0, &;(t,x)\in [0,T)\times\partial \Omega,\\[6pt] u(0,\cdot)=u_0\in H_0^1(\Omega), \quad u_t(0,\cdot)=v_0\in L^2(\Omega),\es&; \ea where 0 < T £ ¥0\Omega is a bounded regular open subset of \mathbbRn\mathbb{R}^n, n 3 1n\ge 1, b,c > 0b,c>0, p > 2p>2, m > 1m>1. We prove a global nonexistence theorem for positive initial value of the energy when 1 < m < p,    2 < p £ \frac2nn-2. 1-Laplacian operator, q > 1q>1.  相似文献   

4.
We prove that, if ${u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^N}We prove that, if u : W ì \mathbbRn ? \mathbbRN{u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^N} is a solution to the Dirichlet variational problem
minwòW F(x, w, Dw) dx     subject  to     w o u0  on  ?W,\mathop {\rm min}\limits_{w}\int_{\Omega} F(x, w, Dw)\,{\rm d}x \quad {\rm subject \, to} \quad w \equiv u_0\; {\rm on}\;\partial \Omega,  相似文献   

5.
Fix a strictly increasing right continuous with left limits function ${W: \mathbb{R} \to \mathbb{R}}Fix a strictly increasing right continuous with left limits function W: \mathbbR ? \mathbbR{W: \mathbb{R} \to \mathbb{R}} and a smooth function F: [l,r] ? \mathbb R{\Phi : [l,r] \to \mathbb R}, defined on some interval [l, r] of \mathbb R{\mathbb R}, such that 0 < b\leqq F¢\leqq b-1{0 < b\leqq \Phi'\leqq b^{-1}}. On the diffusive time scale, the evolution of the empirical density of exclusion processes with conductances given by W is described by the unique weak solution of the non-linear differential equation ?t r = (d/dx)(d/dW) F(r){\partial_t \rho = ({\rm d}/{\rm d}x)({\rm d}/{\rm d}W) \Phi(\rho)}. We also present some properties of the operator (d/dx)(d/dW).  相似文献   

6.
This paper is motivated by the study of a version of the so-called Schrödinger–Poisson–Slater problem: $- \Delta u + \omega u + \lambda \left( u^2 \star \frac{1}{|x|} \right) u=|u|^{p-2}u,$ where ${u \in H^{1}(\mathbb {R}^3)}This paper is motivated by the study of a version of the so-called Schr?dinger–Poisson–Slater problem:
- Du + wu + l( u2 *\frac1|x| ) u=|u|p-2u,- \Delta u + \omega u + \lambda \left( u^2 \star \frac{1}{|x|} \right) u=|u|^{p-2}u,  相似文献   

7.
Let v and ω be the velocity and the vorticity of the a suitable weak solution of the 3D Navier–Stokes equations in a space-time domain containing z0=(x0, t0)z_{0}=(x_{0}, t_{0}), and let Qz0,r = Bx0,r ×(t0 -r2, t0)Q_{z_{0},r}= B_{x_{0},r} \times (t_{0} -r^{2}, t_{0}) be a parabolic cylinder in the domain. We show that if either $\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r})$\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r}) with $\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r})$\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r}) with \frac3g + \frac2a £ 2\frac{3}{\gamma} + \frac{2}{\alpha} \leq 2, where Lγ, αx,t denotes the Serrin type of class, then z0 is a regular point for ν. This refines previous local regularity criteria for the suitable weak solutions.  相似文献   

8.
Let (M, g) be a n-dimensional ( ${n\geqq 2}Let (M, g) be a n-dimensional ( n\geqq 2{n\geqq 2}) compact Riemannian manifold with boundary where g denotes a Riemannian metric of class C . This paper is concerned with the study of the wave equation on (M, g) with locally distributed damping, described by
l utt - Dgu+ a(xg(ut)=0,   on M×] 0,¥[ ,u=0 on ?M ×] 0,¥[, \left. \begin{array}{l} u_{tt} - \Delta_{{\bf g}}u+ a(x)\,g(u_{t})=0,\quad\hbox{on\ \thinspace}{M}\times \left] 0,\infty\right[ ,u=0\,\hbox{on}\,\partial M \times \left] 0,\infty \right[, \end{array} \right.  相似文献   

9.
We consider the asymptotic behaviour of positive solutions u(t, x) of the fast diffusion equation ${u_t=\Delta (u^{m}/m)= {\rm div}\,(u^{m-1} \nabla u)}We consider the asymptotic behaviour of positive solutions u(t, x) of the fast diffusion equation ut=D(um/m) = div (um-1 ?u){u_t=\Delta (u^{m}/m)= {\rm div}\,(u^{m-1} \nabla u)} posed for x ? \mathbb Rd{x\in\mathbb R^d}, t > 0, with a precise value for the exponent m = (d − 4)/(d − 2). The space dimension is d ≧ 3 so that m < 1, and even m = −1 for d = 3. This case had been left open in the general study (Blanchet et al. in Arch Rat Mech Anal 191:347–385, 2009) since it requires quite different functional analytic methods, due in particular to the absence of a spectral gap for the operator generating the linearized evolution. The linearization of this flow is interpreted here as the heat flow of the Laplace– Beltrami operator of a suitable Riemannian Manifold (\mathbb Rd,g){(\mathbb R^d,{\bf g})}, with a metric g which is conformal to the standard \mathbb Rd{\mathbb R^d} metric. Studying the pointwise heat kernel behaviour allows to prove suitable Gagliardo–Nirenberg inequalities associated with the generator. Such inequalities in turn allow one to study the nonlinear evolution as well, and to determine its asymptotics, which is identical to the one satisfied by the linearization. In terms of the rescaled representation, which is a nonlinear Fokker–Planck equation, the convergence rate turns out to be polynomial in time. This result is in contrast with the known exponential decay of such representation for all other values of m.  相似文献   

10.
Consider the class of C r -smooth SL(2, \mathbb R){SL(2, \mathbb R)} valued cocycles, based on the rotation flow on the two torus with irrational rotation number α. We show that in this class, (i) cocycles with positive Lyapunov exponents are dense and (ii) cocycles that are either uniformly hyperbolic or proximal are generic, if α satisfies the following Liouville type condition: |a-\fracpnqn| £ C exp (-qr+1+kn)\left|\alpha-\frac{p_n}{q_n}\right| \leq C {\rm exp} (-q^{r+1+\kappa}_{n}), where C >  0 and 0 < k < 1{0 < \kappa <1 } are some constants and \fracPnqn{\frac{P_n}{q_n}} is some sequence of irreducible fractions.  相似文献   

11.
In association with multi-inhomogeneity problems, a special class of eigenstrains is discovered to give rise to disturbance stresses of interesting nature. Some previously unnoticed properties of Eshelby’s tensors prove useful in this accomplishment. Consider the set of nested similar ellipsoidal domains {Ω1, Ω2,⋯,Ω N+1}, which are embedded in an infinite isotropic medium. Suppose that
in which and ξ t a p , p=1,2,3 are the principal half axes of Ω t . Suppose, the distribution of eigenstrain, ε ij *(x) over the regions Γ t t+1−Ω t , t=1,2,⋯,N can be expressed as
(‡)
where x k x l x m is of order n, and f ijklm (t) represents 3N(n+2)(n+1) different piecewise continuous functions whose arguments are ∑ p=1 3 x p 2 /a p 2. The nature of the disturbance stresses due to various classes of the piecewise nonuniform distribution of eigenstrains, obtained via superpositions of Eq. (‡) is predicted and an infinite number of impotent eigenstrains are introduced. The present theory not only provides a general framework for handling a broad range of nonuniform distribution of eigenstrains exactly, but also has great implications in employing the equivalent inclusion method (EIM) to study the behavior of composites with functionally graded reinforcements. The paper is dedicated to professor Toshio Mura.  相似文献   

12.
We establish the existence and uniqueness results over the semi-infinite interval [0,∞) for a class of nonlinear third order ordinary differential equations of the form
lf"¢( h) + f( h)f"( h) - ( f¢( h) )2 - Mf¢( h)    + C(C + M ) = 0,f( 0 ) = s ,       f¢( 0 ) = c,       limh? ¥ f¢( h) = C.\begin{array}{l}f'( \eta) + f( \eta)f'( \eta) - ( f'( \eta) )^{2} - Mf'( \eta)\\[6pt]\quad {}+ C(C + M ) = 0,\\[6pt]f( 0 ) = s ,\qquad f'( 0 ) = \chi ,\qquad \displaystyle\lim\limits_{\eta \to \infty} f'( \eta) = C.\end{array}  相似文献   

13.
In this paper, we consider v(t) = u(t) − e tΔ u 0, where u(t) is the mild solution of the Navier–Stokes equations with the initial data u0 ? L2(\mathbb Rn)?Ln(\mathbb Rn){u_0\in L^2({\mathbb R}^n)\cap L^n({\mathbb R}^n)} . We shall show that the L 2 norm of D β v(t) decays like t-\frac |b|-1 2-\frac n4{t^{-\frac {|\beta|-1} {2}-\frac n4}} for |β| ≥ 0. Moreover, we will find the asymptotic profile u 1(t) such that the L 2 norm of D β (v(t) − u 1(t)) decays faster for 3 ≤ n ≤ 5 and |β| ≥ 0. Besides, higher-order asymptotics of v(t) are deduced under some assumptions.  相似文献   

14.
Let Ω be a bounded smooth domain in ${{\bf R}^N, N\geqq 3}Let Ω be a bounded smooth domain in RN, N\geqq 3{{\bf R}^N, N\geqq 3}, and Da1,2(W){D_a^{1,2}(\Omega)} be the completion of C0(W){C_0^\infty(\Omega)} with respect to the norm:
||u||a2W |x|-2a|?u|2dx.||u||_a^2=\int_\Omega |x|^{-2a}|\nabla u|^2{d}x.  相似文献   

15.
IntroductionLetEbeanarbitraryBanachspace ,E beitsdualspaceand〈x ,f 〉bethegeneralizeddualitypairingbetweenx∈Eandf ∈E .ThemappingJ :E→ 2 E definedbyJ(x) =f ∈E :〈x ,f 〉 =‖f ‖‖x‖ ,‖f ‖ =‖x‖iscalledthenormalizeddualitymapping .IfE isstrictlyconvex ,thenJissingle_valued .Wesh…  相似文献   

16.
ThePekeris differential operator is defined by $$Au = - c^2 (x_n )\rho (x_n )\nabla \cdot \left( {\frac{1}{{\rho (x_n )}}\nabla u} \right),$$ wherex=(x 1,x 2,...x n )∈R n ,?=(?/?x 1, ?/?x 2,...?/?x n ), and the functionsc(x n),σ(x n) satisfy $$c(x_n ) = \left\{ \begin{gathered} c_1 , 0 \leqq x_n< h, \hfill \\ c_2 , x_n \geqq h, \hfill \\ \end{gathered} \right.$$ and $$\rho (x_n ) = \left\{ \begin{gathered} \rho _1 , 0 \leqq x_n< h, \hfill \\ \rho _2 , x_n \geqq h, \hfill \\ \end{gathered} \right.$$ wherec 1,c 2,? 1,? 2, andh are positive constants. The operator arises in the study of acoustic wave propagation in a layer of water having sound speedc 1 and density? 1 which overlays a bottom having sound speedc 2 and density? 2. In this paper it is shown that the operatorA, acting on a class of functions u (x) which are defined for xn≧0 and vanish for xn=0, defines a selfadjoint operator on the Hilbert space whereR + n ={xR n :x n >0} anddx =dx 1 dx 2...dx n denotes Lebesgue measure in R + n . The spectral family ofA is constructed and the spectrum is shown to be continuous. Moreover an eigenfunction expansion for A is given in terms of a family of improper eigenfunctions. Whenc 1c 2 each eigenfunction can be interpreted as a plane wave plus a reflected wave. When c1< c2, additional eigen-functions arise which can be interpreted as plane waves that are trapped in the layer 0n h by total reflection at the interface xn=h.  相似文献   

17.
We study the behavior of the soliton solutions of the equation i\frac?y?t = - \frac12m Dy+ \frac12We(y) + V(x)y,i\frac{\partial\psi}{{\partial}t} = - \frac{1}{2m} \Delta\psi + \frac{1}{2}W_{\varepsilon}^{\prime}(\psi) + V(x){\psi},  相似文献   

18.
This paper deals with the rational function approximation of the irrational transfer function G(s) = \fracX(s)E(s) = \frac1[(t0s)2m + 2z(t0s)m + 1]G(s) = \frac{X(s)}{E(s)} = \frac{1}{[(\tau _{0}s)^{2m} + 2\zeta (\tau _{0}s)^{m} + 1]} of the fundamental linear fractional order differential equation (t0)2m\fracd2mx(t)dt2m + 2z(t0)m\fracdmx(t)dtm + x(t) = e(t)(\tau_{0})^{2m}\frac{d^{2m}x(t)}{dt^{2m}} + 2\zeta(\tau_{0})^{m}\frac{d^{m}x(t)}{dt^{m}} + x(t) = e(t), for 0<m<1 and 0<ζ<1. An approximation method by a rational function, in a given frequency band, is presented and the impulse and the step responses of this fractional order system are derived. Illustrative examples are also presented to show the exactitude and the usefulness of the approximation method.  相似文献   

19.
This is a series of studies on Wu’s conjecture and on its resolution to be presented herein. Both are devoted to expound all the comprehensive properties of Cauchy’s function f(z) (z = x + iy) and its integral J[f(z) ] ≡(2πi) -1 C f(t)(t z) -1dt taken along the unit circle as contour C,inside which(the open domain D+) f(z) is regular but has singularities distributed in open domain Doutside C. Resolution is given to the inverse problem that the singularities of f(z) can be determined in analytical form in terms of the values f(t) of f(z) numerically prescribed on C(|t| = 1) ,as so enunciated by Wu’s conjecture. The case of a single singularity is solved using complex algebra and analysis to acquire the solution structure for a standard reference. Multiple singularities are resolved by reducing them to a single one by elimination in principle,for which purpose a general asymptotic method is developed here for resolution to the conjecture by induction,and essential singularities are treated with employing the generalized Hilbert transforms. These new methods are applicable to relevant problems in mathematics,engineering and technology in analogy with resolving the inverse problem presented here.  相似文献   

20.
We prove the existence of a global semigroup for conservative solutions of the nonlinear variational wave equation u tt c(u)(c(u)u x ) x  = 0. We allow for initial data u| t = 0 and u t | t=0 that contain measures. We assume that 0 < k-1 \leqq c(u) \leqq k{0 < \kappa^{-1} \leqq c(u) \leqq \kappa}. Solutions of this equation may experience concentration of the energy density (ut2+c(u)2ux2)dx{(u_t^2+c(u)^2u_x^2){\rm d}x} into sets of measure zero. The solution is constructed by introducing new variables related to the characteristics, whereby singularities in the energy density become manageable. Furthermore, we prove that the energy may focus only on a set of times of zero measure or at points where c′(u) vanishes. A new numerical method for constructing conservative solutions is provided and illustrated with examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号