首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Two series of activated carbon have been prepared by chemical activation of Amygdalus Scoparia shell with phosphoric acid or zinc chloride for the removal of Pb(II) ions from aqueous solutions. Several methods were employed to characterize the active carbon produced. The surface area was calculated using the standard Brunauer-Emmet-Teller method. The microstructures of the resultant activated carbon were observed by scanning electron microscopy. The chemical composition of the surface resultant activated carbon was determined by Fourier transform infrared spectroscopy. In the batch tests, the effect of pH, initial concentration, and contact time on the adsorption were studied. The data were fitted with Langmuir and Freundlich equations to describe the equilibrium isotherms. The maximum adsorption capacity of Pb(II) on the resultant activated carbon was 36.63 mg g−1 with H3PO4 and 28.74 mg g−1 with ZnCl2. To regenerate the spent adsorbents, desorption experiments were performed using 0.25 mol L−1 HCl. Here we propose that the activated carbon produced from Amygdalus Scoparia shell is an alternative low-cost adsorbent for Pb(II) adsorption.  相似文献   

2.
The adsorption of activated carbon prepared from Scenedesmus obliquus (algae) was evaluated through adsorption of Astrazon red. The adsorption efficiency of activated carbon was determined based on the specific surface area and pore size distribution. These results were compared with the results obtained with untreated algae. Approximately a 3-fold increase in the percentage of dye removal was observed for activated carbon compared to the untreated material. The primary reason for this observation may be the increase in specific surface area and total pore volume by chemical activation from 0.0136 to 423.7001?m2?g?1 and from 0.0012 to 0.1643?cm3?g?1, respectively. A pseudo-second-order model was fit with the kinetic data and the results indicate chemical adsorption. The maximum adsorption capacity of activated carbon was 181.82?mg?g?1 at 25°C according to Langmuir isotherm model.  相似文献   

3.
The process of adsorption of two dissociating and two non-dissociating aromatic compounds from dilute aqueous solutions on an untreated commercially available activated carbon (B.D.H.) was investigated systematically. All adsorption experiments were carried out in pH controlled aqueous solutions. The experimental isotherms were fitted into four different models (Langmuir homogenous Models, Langmuir binary Model, Langmuir-Freundlich single model and Langmuir-Freundlich double model). Variation of the model parameters with the solution pH was studied and used to gain further insight into the adsorption process. The relationship between the model parameters and the solution pH and pKa was used to predict the adsorption capacity in molecular and ionic form of solutes in other solution.A relationship was sought to predict the effect of pH on the adsorption systems and for estimating the maximum adsorption capacity of carbon at any pH where the solute is ionized reasonably well.N2 and CO2 adsorption were used to characterize the carbon. X-ray Photoelectron Spectroscopy (XPS) measurement was used for surface elemental analysis of the activated carbon.  相似文献   

4.
Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the lignin at different temperatures (200 to 500°C) by ZnCl2. The effects influencing the surface area of the resulting activated carbon are activation temperature, activation time and impregnation ratio. The optimum condition, are found an impregnation ratio of 2, an activation temperature of 450°C, and an activation time of 2 h. The results showed that the surface area and micropores volume of activated carbon at the experimental conditions are achieved to 587 and 0.23 cm3 g?1, respectively. The adsorption behavior of methyl orange dye from aqueous solution onto activated lignin was investigated as a function of equilibrium time, pH and concentration. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 300 mg g?1 of methyl orange by activated carbon was achieved.  相似文献   

5.
The adsorption of p-nitrophenol in one untreated activated carbon (F100) and three treated activated carbons (H2, H2SO4 and Urea treated F100) was carried out at undissociated and dissociated conditions.To characterize the carbon, N2 and CO2 adsorption were used. X-ray Photoelectron Spectroscopy (XPS) was used to analyze the surface of the activated carbon.The experimental isotherms are fitted via the Langmuir homogenous model and Langmuir binary model. Variation of the model parameters with the solution pH is studied. Both Q max and the adsorption affinity coefficient (K 1) were dependent on the PZC of the carbons and solution pH. The Effect of pH must be considered due to its combined effects on the carbon surface and on the solute molecules. Adsorption of p-nitrophenol at higher pH was found to be dependent on the concentration of the anionic form of the solute.  相似文献   

6.
The adsorption process of 3-chloro phenol from aqueous solution on a activated carbon prepared from African palm stone and which presents a specific surface area of 685 m2 g−1, a greater quantity of total acid groups and a pHPZC of 6.8 is studied. The adsorption isotherms are determined at pH values of 3, 5, 7, 9 and 11. The adsorption isotherms are fitted to the Langmuir model and the values of the maximum quantity adsorbed that are between 96.2 and 46.4 mg g−1 are obtained along with the constant KL with values between 0.422 and 0.965 L mg−1. The maximum quantity adsorbed diminishes with the pH and the maximum value for this is a pH of 5. The immersion enthalpies of the activated carbon in a 3-chloro phenol solution of constant concentration, of 100 mg L−1, are determined for the different pH levels, with results between 37.6 and 21.2 J g−1. Immersion enthalpies of the activated carbon in function of 3-chloro phenol solution concentration are determined to pH 5, of maximum adsorption, with values between 28.3 and 38.4 J g−1, and by means of linearization, the maximum immersion enthalpy is calculated, with a value of 41.67 J g−1. With the results of the immersion enthalpy, maximum quantity adsorbed and the constant KL, establish relations that describe the adsorption process of 3-chloro phenol from aqueous solution on activated carbon.  相似文献   

7.
The separation between CH4 and N2 bears importance in coalbed methane enrichment, and activated carbon is a major adsorbent for industrial PSA (pressure swing adsorption) separation. However, the adsorption of both gases shows supercritical features, and the physicochemical properties are also similar, which results in similar adsorption behavior and renders the separation difficult. To maximize the separation coefficient, the effect of carbon pore structure on the separation was studied and a series of carbons was prepared at different extent of activation. The effect of specific surface area, pore size and pore volume on the separation coefficient was observed and a linear correlation between the separation coefficient and the small pore (0.7–1.3?nm) volume reduced to unit surface area was shown.  相似文献   

8.
A series of zeolite X/activated carbon composites with different ratio of zeolite X and activated carbon were prepared, which were adjusted by adding solid pitch powder and silicon dioxide as additional carbonaceous and silica source, respectively. The corresponding modified samples were obtained by treatment with the ammonium chloride solution. CH4 and N2 adsorption isotherms on all composites were determined within the pressure of 0–100 kPa at 298 K, and fitted with Henry model and Freundlich model. The results showed the adsorption separation abilities for CH4 and N2 were strongly influenced by activated carbon content, micropore structure and surface properties. The increase of activated carbon content increased the BET surface area, micropore surface area and micropore volume, leading to an enhanced CH4 adsorption capacity and CH4/N2 adsorption selectivity. Compared with the unmodified composites, the modified composites showed higher CH4/N2 adsorption selectivity, and CH4 adsorption capacity decreased slightly, which can be attributed to the reduction of the micropore structure parameters, the surface basic amount and basic strength. Furthermore, the modified composite HAX-3 presented the highest CH4/N2 selectivity of 3.4, and high CH4 adsorption capacities, which is favorable for application in pressure swing adsorption processes.  相似文献   

9.
The adsorption of aromatic compounds onto activated carbons and carbon nanofibers is of considerable technical importance and beneficial in electroanalytical procedures. Here, effects due to the strong adsorption of hydroquinone, benzoquinone, and phenol onto carbon nanofiber electrodes immersed in aqueous media are reported. Carbon nanofiber materials (fiber diameter approximately 100 nm) are grown onto ceramic fiber substrates by employing an ambient pressure chemical vapour deposition process. The resulting composite electrode material is sufficiently electrically conducting due to the high carbon content and mechanically robust due to the ceramic backbone. It is shown that the voltammetric signal obtained for the one electron reduction of Ru(NH3)63+ is dominated by solution trapped in the three-dimensional electrode structure. In contrast, for the hydroquinone/benzoquinone redox system in aqueous phosphate buffer (pH 7) strong adsorption onto the carbon nanofiber material is observed. In the presence of phenol also strong adsorption is detected. In the course of the chemically irreversible oxidation of phenol in aqueous phosphate buffer (pH 7), the formation of multi-electron oxidation products related to benzoquinone is observed. The pathway for the oxidation process is attributed to (i) the high surface area of the carbon nanofiber electrode and (ii) the adsorption of intermediates.  相似文献   

10.
Given the great interest in the CO2 removal and decreasing their impact on the environment, in this work, a calorimetric study of CO2 adsorption on different activated carbons was performed. For this purpose, we used two methodologies for the determination heat of CO2 adsorption: determination of CO2 isotherms at different temperatures and adsorption calorimetry. The heats determined by these two techniques were compared. In this regard, carbonaceous materials of granular and monolithic types were prepared, characterized, and functionalized for carbon dioxide adsorption. As precursor material, African palm stones that were activated with H3PO4 and CaCl2 at different concentrations was used. The obtained materials were functionalized in gas phase with NH3 and liquid phase with NH4OH, with the intention to incorporate the surface basic groups (amines or nitrogen groups) and subsequently were studied for CO2 adsorption at 273 K and atmospheric pressure. For characterization of these materials, the following techniques are used: N2 adsorption at 77 K and immersion calorimetry in different solvents. The experimental results show the obtaining of micropores and mesoporous (moderately) materials, with surface area between 430 and 1,425 m2 g?1 and pore volumes between 0.17 and 0.53 cm3 g?1. It was determined that there is a difference between the heats of CO2 adsorption obtained by the techniques employed. This deviation between the values corresponds to the methodological difference between the two experiments. In this work, we obtained a maximum adsorption capacity of CO2, which is greater than 334 mg CO2 g?1 at 273 K and 1 bar in carbon materials with moderate surface area and pores volume.  相似文献   

11.
Adsorption of p-Cresol and p-Nitrophenol by untreated activated carbon in single and multisolute solutions was carried out at 301 K and at controlled pH conditions. In acidic conditions, well below the pK a of both solutes, it was observed that the adsorbate solubility and the electron density of aromatic rings influenced the extent of adsorption by affecting the extent of London dispersion forces. The fitted parameters obtained from single-solute Langmuir equation show that Q max and the adsorption affinity of carbon for the compound with low pK a decrease more significantly. In higher solution pH conditions, on the other hand, it was found that electrostatic forces played a significant role on the extent of adsorption. The presence of another compound decreases Q max and the adsorption affinity of carbon for the principal compound. The effect of pH, on the carbon surface and on the solute molecules, must be considered. Adsorption of the solute at higher pH values was found to be dependent on the concentration of anionic form of the solute. The isotherm data were fitted to the Langmuir isotherm equation for both single and double solute solutions.  相似文献   

12.
Grapevine rhytidome (the outer layer of bark on trunk), as an abundant and low-cost precursor, was used to prepare granular activated carbon with high surface area for the removal of methyl violet from aqueous solution. Microwave heating source was used to reduce the treatment time and energy consumption. To optimize the preparation, the effects of the different parameters, such as phosphoric acid concentration, acid/precursor weight ratio, impregnation time, microwave power, radiation time, and oven heating time on the ability of the samples for removal of methyl violet were studied. The obtained activated carbon was characterized by N2 adsorption/desorption, SAXS, TEM and SEM methods. The adsorption of methyl violet onto the activated carbon was studied from both equilibrium and kinetic point of view and the results were compared with the commercial granular activated carbon. The rate of adsorption onto the prepared activated carbon was faster than commercial activated carbon. Different kinetic models were used to analyze the experimental kinetic data. The obtained activated carbon showed higher adsorption capacity (more than twice) for the adsorption of methyl violet in comparison with the commercial one. The equilibrium data were analyzed using different isotherm models. Adsorption was found to be maximum in the pH range 7-9.  相似文献   

13.
Modifications of texture and surface properties of a commercial activated carbon (Norit GF-40) were performed by several treatments in order to study their effects on the selective adsorption of nitromethane from nitromethane/water vapor mixtures. Characterisation of the samples by nitrogen adsorption and thermal analysis showed that HNO3 treatments produce important losses of porosity and surface area, accompanied of an increase of oxygenated functional groups on the surface of carbon, which are progressively removed by heating at temperatures between 573 and 1073 K. All this leads to a drastic decrease of the adsorption capacity per gram of adsorbent with respect to the raw carbon, which offers, on the other hand, the best adsorptive performance. Oxidation by H2O2 does not practically affect its textural properties and introduces an important amount of oxygen functional groups at the surface, but changes in the adsorptive properties of carbon are insignificant. Sample oxidised by H2O2 and subsequently treated by diethylentriamine shows a decrease in adsorption capacity, without any relevant loss of surface area. The raw carbon treated at high temperature that exhibits the highest surface area and where surface functional groups are absent, showed the greatest adsorption capacity for nitromethane, being much more selective for nitromethane than for water, in nitromethane-water mixtures. Adsorption capacity values for nitromethane on the different samples are related to the extent of the surface area, while water vapour adsorption seems to depend on the population of functional groups at the surface, which may work as adsorption sites.  相似文献   

14.

The change in the thermodynamic properties of triclosan adsorption on three activated carbons with the different surface chemistry was studied through immersion calorimetry and equilibrium data; the amount adsorbed of triclosan (Q) during calorimetry was determined and correlated with the energy associated with adsorbate–adsorbent interactions in the adsorption process. It was noted that triclosan adsorption capacity decreases with an increase in oxygenated surface groups. For an activated carbon oxidized with HNO3 (OxAC), the amount adsorbed was 8.50?×?10?3 mmol g?1, for a activated carbon without modification (GAC) Q?=?10.3?×?10?3 mmol g?1 and for a activated carbon heated at 1073 K (RAC1073) Q?=?11.4?×?10?3 mmol g?1. The adsorbed amounts were determined by adjusting the isotherms to the Sips model. For the activated carbon RAC1073, the immersion enthalpy (ΔHimm) was greater than those of the other two activated carbons due to the formation of interactions with the solvent (ΔHimmOxAC?=?? 27.3 J g?1?<?ΔHimmGAC?=?? 40.0 J g?1?<?ΔHimm RAC1073?=???60.7 J g?1). The changes in the interaction enthalpy and Gibbs energy are associated with adsorbate–adsorbent interactions and side interactions such as the adsorbate–adsorbate and adsorbate–solvent interactions.

  相似文献   

15.
Hydrogenation reactions of alkenes (cyclohexene, ethyl acrylate, styrene and 1,5-cyclooctadiene) and aromatic compounds (o-, m- and p-xylene) were carried out in order to examine the activity of palladium-loaded surface-oxidized diamond (Pd/O-Dia) catalyst in liquid-phase hydrogenation. The catalytic performance was compared to commercial palladium-loaded activated carbon (Pd/C) catalyst. The catalyst activities were evaluated by conversions of reactants and H2 uptake rates in the early stage of the reaction. In all the hydrogenation reactions of alkenes and aromatic compounds, the activity of Pd/O-Dia was almost the same as or slightly higher than that of Pd/C. Dispersion of Pd metal was measured by a CO-pulsed adsorption technique and TEM observations of the catalysts. Pd dispersions were on the same order of magnitude according to the CO-pulsed adsorption technique, although the Pd/C catalyst had a higher surface area (718 m2/g) than that of Pd/O-Dia (23 m2/g). The Pd particle sizes on O-Dia measured by TEM observation were slightly smaller than those on the activated carbon. Such highly dispersed Pd particles on O-Dia would contribute to higher activity for the hydrogenation reaction of alkenes and aromatic compounds.  相似文献   

16.
Composite waste composed of carbon fibres and polybenzoxazines resin has been pyrolysed in a fixed bed reactor at temperatures of 350, 400, 450, 500 and 700 °C. Solid residues of between 70 and 83.6 wt%, liquid yields 14 and 24.6 wt% and gas yields 0.7 and 3.8 wt% were obtained depending on pyrolysis temperature. The derived pyrolysis liquids contained aniline in high concentration together with oxygenated and nitrogenated aromatic compounds. The pyrolysis gases consisted mainly of CO2, CO, CH4, H2 and other hydrocarbons. The carbon fibres used in the composite waste were separated from the char of the solid residue via oxidation of the char at two different temperatures and investigated for their mechanical strength properties. The carbon fibres recovered from the sample pyrolysed at 500 °C and oxidised at 500 °C exhibited mechanical properties which were 90% of that of the original virgin carbon fibres. Steam activation of the recovered carbon fibres was carried out at 850 °C at different times of activation. The effect of activation time on BET surface area, activated carbon fibres yield, porosity and the morphological structure of activated carbon fibres was evaluated. A maximum BET surface area of over 800 m2 g−1 was obtained for the activated carbon fibres produced at 850 °C for 5 h of activation. Nitrogen adsorption-desorption isotherms showed that the adsorption capacity increased as the activation time increased up to 5 h of activation and then after that decreased.  相似文献   

17.
载铜活性炭吸附一氧化碳的密度泛函理论计算   总被引:3,自引:0,他引:3  
黎军  马正飞  刘晓勤  姚虎卿 《化学学报》2005,63(10):903-908
应用密度泛函理论和相对论有效核势方法, 用C16H10, C13H9, C12H12原子簇模型模拟活性炭表面, 计算得到了CO在载铜活性炭上的吸附位、吸附构型和吸附能. 研究表明: 载铜活性炭吸附CO的过程, 本质上是Cu(I)通过σ-π配键与CO络合, 形成Cu—C键的过程. 载铜活性炭对CO的络合吸附能在50~60 kJ/mol之间, 远大于活性炭对CO的物理吸附能(9.15 kJ/mol), 因而络合吸附更稳定, 选择性也更高. Cu(I)选择吸附在活性炭表面的顶位和桥位, 一个Cu(I)至多可以吸附一个到两个CO分子, 但吸附一个CO比吸附两个CO稳定.  相似文献   

18.
This study was conducted to understand and optimize the activation process for the production of a low-cost activated carbon (AC) using a renewable and plentiful biomass waste, pinecones. This was achieved by tracking the changes in porous structure, surface chemistry and adsorption properties of the AC produced using different activating agents, activation temperatures, holding times and heating rates. Generally, produced ACs were predominantly microporous with small external surface area and were different in terms of H/C and O/C ratios. Study of Pb2+ cations adsorption on these samples proved the high affinity of the pinecones derived ACs to this cation. The best adsorption behaviour was recognized in sample prepared by impregnation with H3PO4 at weight ratio of 2, then heating at 400?°C for 2?h at 5?°C/min heating rate. This sample possessed the highest BET surface area (1335 m2/g). The adsorption process obeyed the pseudo-first-order and Freundlich model slightly better than the pseudo-second-order kinetics and Langmuir model. The high Langmuir maximum adsorption capacity of 418?mg/g supports the applicability of the produced AC for the removal of Pb2+ cations from wastewater.  相似文献   

19.
Coir pith obtained from the coir industry as waste biomass was used to prepare activated carbon by chemical activation using phosphoric acid (H3PO4). The influences of activation temperature and lasting time of activation on specific surface areas (SSA) of the activated carbons were observed. Physical characteristics of the activated carbon were investigated using X-ray diffraction (XRD), infra-red spectroscopy (IR), surface area analyzer, scanning electron microscopy (SEM), thermal analysis and potentiometric titration. The feasibility of using activated carbon for the removal of phenol (P), p-chlorophenol (PCP) and p-nitrophenol (PNP) from water and petroleum refinery industry effluents was investigated. The effects of contact time, adsorbent dose, ionic strength and initial concentration on the adsorption of phenols onto the activated carbon were investigated. The optimum pH for the maximum removal of phenols was 6.0. The equilibrium adsorption data of phenols were correlated to Langmuir and Freundlich isotherm models, the latter being the best fit of the experimental data. Dynamics of the sorption process and mass transfer were investigated using McKay and Urano-Tachikawa models. Adsorption kinetic data fits the Urano-Tachikawa kinetic model. The utility of the adsorbent was tested by using petroleum refinery industry effluent. The adsorbed phenols can be recovered by treatment with 0.1 M NaOH solution.  相似文献   

20.
Nitrogen adsorption isotherms for fluorinated activated carbon fiber (F-ACF) and fluorinated carbon black (F-CB) were measured at 77 K. Surface structures of F-ACF and F-CB were examined by s -plot analysis using the adsorption data on the nonporous carbon black (CB) and F-CB. The surface energy of F-ACF was lower than that of ACF. The micropore structure of ACF was preserved even after fluorination, although the limiting adsorption amount and the micropore width decreased with fluorination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号