首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Calibration model transfer is essential for practical applications of near infrared (NIR) spectroscopy because the measurements of the spectra may be performed on different instruments and the difference between the instruments must be corrected. An approach for calibration transfer based on alternating trilinear decomposition (ATLD) algorithm is proposed in this work. From the three-way spectral matrix measured on different instruments, the relative intensity of concentration, spectrum and instrument is obtained using trilinear decomposition. Because the relative intensity of instrument is a reflection of the spectral difference between instruments, the spectra measured on different instruments can be standardized by a correction of the coefficients in the relative intensity. Two NIR datasets of corn and tobacco leaf samples measured with three instruments are used to test the performance of the method. The results show that, for both the datasets, the spectra measured on one instrument can be correctly predicted using the partial least squares (PLS) models built with the spectra measured on the other instruments.  相似文献   

2.
This International Standard specifies a method for evaluating the constancy and repeatability of the intensity scale of Auger electron spectrometers, for general analytical purposes, using an electron gun with a beam energy of 2 keV or greater. It is only applicable to instruments that incorporate an ion gun for sputter cleaning. It is not intended to be a calibration of the intensity/energy response function. 1 , 2 That calibration may be made by the instrument manufacturer or other organization. The present procedure provides data to evaluate and confirm the accuracy with which the intensity/energy response function remains constant with instrument usage. Guidance is given to some of the instrumental settings that may affect this constancy. © Crown Copyright 2006. Reproduced with the permission of the Controller of HMSO.  相似文献   

3.
Due to modern developments Raman spectroscopy has evolved into a fast vibrational technique. Detailed fingerprints in combination with non-destructivity and minimal sample preparation has allowed the construction of reference libraries in a variety of research fields. Long-term stability and comparability are important characteristics when developing reference libraries. In addition, small shifts in highly similar spectra of different samples may limit the full potential of Raman spectroscopy. Since libraries often contain a large number of different and/or highly similar spectra, it is important that each data point in all the spectra corresponds to the exact Raman wavenumber. This is often not the case, due to shifts in optical pathway and/or shifts in laser wavelength. This paper describes a complete calibration protocol (wavelength and intensity) and evaluates the procedure for both short and long term stability, by means of 60 randomly selected measurement sessions spread over a period of nine months. A two-step standardization procedure is proposed to deal with spectral shifts.  相似文献   

4.
In this paper we evaluate methods for standardization of Raman spectra that are required to improve spectral correlation computations between spectra measured on different instruments. Five commercially-available 785 nm Raman spectrometers from different vendors were included in the study. These spectrometers have diverse specifications and performance levels and range in size from laboratory-based instruments to field-deployable portable and handheld platforms. Since each Raman spectrometer has different characteristics, spectra obtained on one instrument cannot readily be compared to a library acquired on a different instrument without performing various types of spectral corrections (standardization). We outline a procedure that combines previously established Raman shift and intensity correction protocols with a resolution matching step to facilitate the comparison of a centralized master library with spectra acquired on different geographically distributed Raman spectrometers. The standardization procedure is effective in reducing the inherent instrument-to-instrument variability so that spectra from different spectrometers can be compared and reliable results obtained using library-based spectral correlation methods. The findings have important implications for the ability to transfer Raman spectral libraries between instruments.  相似文献   

5.
The development of a new quantitative method for amino acids using Raman spectroscopy is reported. Raman spectra of glycine, alanine, aspartic acid, glutamic acid, phenylalanine, and tryptophan were measured. The band ratio between the Raman intensity of the amino acid and that of acetonitrile as an external standard was calculated to remove the influence of factors such as laser power intensity and instrumental effects. The calibration curves were obtained by plotting the band ratios against the concentrations of the amino acids. The curves were linear with coefficient correlations of over 0.99 for all amino acids. The Raman spectra of known concentration samples were measured to confirm the reproducibility of this method. The relative errors were small, indicating that the concentrations of amino acids can be determined using Raman spectroscopy. The limits of detection and quantitation were determined as thrice and 10 times the standard deviation of the background signal to be 0.007 and 0.02?mol?L?1, respectively. Raman spectra of aspartic acid at 0.02?mol?L?1 were measured several times and the uncertainty was 7%.  相似文献   

6.
This International Standard specifies a method for evaluating the repeatability and constancy of the intensity scale of X‐ray photoelectron spectrometers, for general analytical purposes, using non‐monochromated Al or Mg X‐rays or monochromated Al X‐rays. It is only applicable to instruments that incorporate an ion gun for sputter cleaning. It is not intended to be a calibration of the intensity/energy response function (Seah MP. J. Electron Spectrosc. 1995; 71: 191; http://www.npl.co.uk/nanoanalysis/a1calib.html [2006]). That calibration may be made by the instrument manufacturer or other organization. The present method provides data to evaluate and confirm the accuracy with which the intensity/energy response function remains constant with instrument usage. Guidance is given to some of the instrument settings that may affect this constancy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Fluorescence excitation-emission matrix (EEM) spectroscopy is a useful tool for interpretation of fluorescence information from natural water samples. One of the major problems with this technique is the inner-filter effect (IFE), i.e. absorption of light at both the excitation and emission wavelengths. The common solutions are to either dilute the sample or apply some form of mathematical correction, most often based on the measured absorbance of the sample. Since dilution is not always possible, e.g. in on-line or in situ EEM recordings, and corrections based on absorbance are hampered primarily by the use of a separate absorbance instrument, neither of these solutions is optimal. In this work, we propose a mathematical correction procedure based on the intensity of Raman scatter from water. This procedure was found to reduce the error after correction by up to 50% in comparison with two absorbance correction procedures. Furthermore, it does not require the use of a separate absorbance measurement, and it is applicable to on-line and in situ EEM recordings, where the IFE would otherwise cause problems.  相似文献   

8.
The analysis of precious artefacts and antiquities demands care in order to minimise the risk of accidental damage during measurement. Mobile fibre-optic-based Raman instruments offer a means to avoid destructive sampling and eliminate the need to transport artefacts for spectrochemical analysis. In this work we present a new mobile instrument developed and optimised for the in situ Raman investigation of objects of art and antiquities. The instrument is controlled by a portable computer. Selected mounts cover many types of artefacts. Newly written software routines organise spectra together with measurement parameters and facilitate calibration of the instrument. The present paper describes this new Raman instrument and discusses some challenges in the transition from a laboratory environment to in situ investigations in museums.  相似文献   

9.
A simple method to determine polymer blend compositions from their Raman spectra is presented. The method is based on expanding linearly the experimentally measured Raman spectrum of the blend, in terms of Raman spectra of pure components. A smooth function has also been included in the linear expansion to take into account the fluorescence interference, inherent to Raman spectroscopy. The coefficients of the linear expansion that give the best fit to the experimentally measured Raman spectrum of the blend are found by using a standard method of parameter estimation (Marquardt–Levenberg). These coefficients are directly related to the blend composition via a simple calibration procedure. Unlike standard methods of processing Raman spectra as deconvolution and curve‐fitting—which use Gaussian and/or Lorentzian functions to approximate the spectrum bands—the proposed method does not require either baseline correction or previous knowledge of peak parameters. Also, this method requires less CPU time than deconvolution and curve‐fitting procedures, and it is easy to automate. The proposed method has been applied to blends made out of two polymers: Polystyrene (PS) and poly(phenylene oxide) (PPO), to test its precision and consistency. Excellent agreement was found between calculated and expected blend compositions. Also, the reconstructed spectra agree very well with the experimentally measured blend spectra. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1013–1023, 2000  相似文献   

10.
Mid-infrared fiberoptics reflectance spectroscopy (mid-IR FORS) is a very interesting technique for artwork characterization purposes. However, the fact that the spectra obtained are a mixture of surface (specular) and volume (diffuse) reflection is a significant drawback. The physical and chemical features of the artwork surface may produce distortions in the spectra that hinder comparison with reference databases acquired in transmission mode. Several studies attempted to understand the influence of the different variables and propose procedures to improve the interpretation of the spectra. This article is focused on the application of mid-IR FORS and multivariate calibration to the analysis of easel paintings. The objectives are the evaluation of the influence of the surface roughness on the spectra, the influence of the matrix composition for the classification of unknown spectra, and the capability of obtaining pigment composition mappings. A first evaluation of a fast procedure for spectra management and pigment discrimination is discussed. The results demonstrate the capability of multivariate methods, principal component analysis (PCA), and partial least squares discrimination analysis (PLS-DA), to model the distortions of the reflectance spectra and to delimitate and discriminate areas of uniform composition. The roughness of the painting surface is found to be an important factor affecting the shape and relative intensity of the spectra. A mapping of the major pigments of a painting is possible using mid-IR FORS and PLS-DA when the calibration set is a palette that includes the potential pigments present in the artwork mixed with the appropriate binder and that shows the different paint textures. Graphical Abstract
?  相似文献   

11.
The former major problem in conventional Raman spectroscopy in the visible range, the disturbing fluorescence of impurities, has now been eliminated: Raman spectra can be excited by light quanta in the near-infrared range, the energy of which is too low to excite fluorescence spectra. An inherent disadvantage of this technique, the v 4-dependence of the intensity of the Raman radiation, is compensated for by using interferometers, which are more powerful, by a factor of several hundred, than grating spectrometers. Raman spectroscopy can now be applied to analyses of real world samples bio materials, food, paintings, micro electronics and new materials, as well as to quality control of raw materials, to production and product control without special sample preparation. By using fiber bundles, Raman spectra can be recorded on line at the sample site, in containers and in real time. For successful recording of NIR FT Raman spectra of small samples a compromise between large lateral resolution and a large signal/noise ratio has to be found. Its theoretical base and practical approach is discussed. Confocal microscopes allow recording of NIR FT Raman spectra of small particles or inclusions. They can be coupled to the spectrometer by fiber optics, so that they may be placed at some distance from the spectrometer. By using computer-driven x-y stages, systematic mapping of the distribution of specific compounds on the surface of different samples is possible with the FT Raman microscope, as well as with the ordinary sample arrangement.  相似文献   

12.
Sepsis is a life-threatening clinical condition responsible for approximately 11 million deaths worldwide. Rapid and accurate identification of pathogenic bacteria and its antimicrobial susceptibility play a critical role in reducing the morbidity and mortality rates related to sepsis. Raman and infrared spectroscopies have great potential to be used as diagnostic tools for rapid and culture-free detection of bacterial infections. Despite numerous reports using both methods to analyse bacterial samples, there is to date no study collecting both Raman and infrared signatures from clinical samples simultaneously due to instrument incompatibilities. Here, we report for the first time the use of an emerging technology that provides infrared signatures via optical photothermal infrared (O-PTIR) spectroscopy and Raman spectra simultaneously. We use this approach to analyse 12 bacterial clinical isolates including six isolates of Gram-negative and six Gram-positive bacteria commonly associated with bloodstream infection in humans. To benchmark the single cell spectra obtained by O-PTIR spectroscopy, infrared signatures were also collected from bulk samples via both FTIR and O-PTIR spectroscopies. Our findings showed significant similarity and high reproducibility in the infrared signatures obtained by all three approaches, including similar discrimination patterns when subjected to clustering algorithms. Principal component analysis (PCA) showed that O-PTIR and Raman data acquired simultaneously from bulk bacterial isolates displayed different clustering patterns due to the ability of both methods to probe metabolites produced by bacteria. By contrast, signatures of microbial pigments were identified in Raman spectra, providing complementary and orthogonal information compared to infrared, which may be advantageous as it has been demonstrated that certain pigments play an important role in bacterial virulence. We found that infrared spectroscopy showed higher sensitivity than Raman for the analysis of individual cells. Despite the different patterns obtained by using Raman and infrared spectral data as input for clustering algorithms, our findings showed high data reproducibility in both approaches as the biological replicates from each bacterial strain clustered together. Overall, we show that Raman and infrared spectroscopy offer both advantages and disadvantages and, therefore, having both techniques combined in one single technology is a powerful tool with promising applications in clinical microbiology.

O-PTIR was used for simultaneous collection of infrared and Raman spectra from clinical pathogens associated with bloodstream infections.  相似文献   

13.
Raman and infrared (IR) spectroscopy are complementary spectroscopic techniques. However, measurement of Raman and IR spectra are commonly carried out on separate instruments. A dispersive system that enables both Raman spectroscopy and NIR spectroscopy was designed, built, and tested. The prototype system measures spectral ranges of 2600–300 cm−1 and 752–987 nm for Raman and NIR channels, respectively. A wavelength accuracy better than 0.6 nm and spectral resolution better than 1 nm (14.4 cm−1 for Raman channel) could be achieved with our configuration. The linearity of spectral response was better than 99.8%. The intensity stability of the instrument was found to be 0.7% and 0.4% for Raman and NIR channels, respectively. The performance of the instrument was evaluated using binary aqueous solutions of ethanol and ovalbumin. It was found that ethanol concentrations (2–10%) could be predicted with a root mean squared error of prediction (RMSEP) of 0.45% using Raman peak height at 882.2 cm−1. Quantification of ovalbumin concentration (8–16 g/L) in aqueous solutions and in denatured states yielded RMSEP values of 1.05 g/L and 0.74 g/L, respectively. Using concentration as external perturbation in two-dimensional correlation spectroscopy (2DCOS), heterospectral correlation analysis revealed the relationship between NIR and Raman spectra.  相似文献   

14.
A method is proposed for producing a standardised intensity scale for liquid spectra measured on Fourier transform Raman spectrometers. The method uses hexachlorobutadiene as an external standard, and relies upon the high degree of reproducibility available between spectra on a Fourier transform Raman instrument. This procedure is designed primarily to be simple to use and easy to automate in order that it may be applied in routine analytical laboratories with a minimum of recording and processing time. Limitations to the technique and alternative means of standardisation are discussed.  相似文献   

15.
Heme and heme degradation products play critical roles in numerous biological phenomena which until now have only been partially understood. One reason for this is the very low concentrations at which free heme, its complexes and the partly unstable degradation products occur in living cells. Therefore, powerful and specific detection methods are needed. In this contribution, the potential of nondestructive Raman spectroscopy for the detection, quantification and discrimination of heme and heme degradation products is investigated. Resonance Raman spectroscopy using different excitation wavelengths (413, 476, 532, and 752?nm) is employed to estimate the limit of detection for hemin, myoglobin, biliverdin, and bilirubin. Concentrations in the low micromolar range (down to 3?μmol/L) could be reliably detected when utilizing the resonance enhancement effect. Furthermore, a systematic study on the surface-enhanced Raman spectroscopy (SERS) detection of hemin in the presence of other cellular components, such as the highly similar cytochrome c, DNA, and the important antioxidant glutathione, is presented. A microfluidic device was used to reproducibly create a segmented flow of aqueous droplets and oil compartments. Those aqueous droplets acted as model chambers where the analytes have to compete for the colloid. With the help of statistical analysis, it was possible to detect and differentiate the pure substances as well as the binary mixtures and gain insights into their interaction.
Figure
Resonance Raman spectrum of met-myoglobin and Raman intensity - concentration - calibration plot.  相似文献   

16.
Near infrared (NIR) spectroscopy has become a promising technique for the in vivo monitoring of glucose. Several capillary-rich locations in the body, such as the tongue, forearm, and finger, have been used to collect the in vivo spectra of blood glucose. For such an in vivo determination of blood glucose, collected NIR spectra often show some dependence on the measurement conditions and human body features at the location on which a probe touches. If NIR spectra collected for different oral glucose intake experiments, in which the skin of different patients and the measurement conditions may be quite different, are directly used, partial least squares (PLS) models built by using them would often show a large prediction error because of the differences in the skin of patients and the measurement conditions. In the present study, the NIR spectra in the range of 1300-1900 nm were measured by conveniently touching an optical fiber probe on the forearm skin with a system that was developed for in vivo measurements in our previous work. The spectra were calibrated to resolve the problem derived from the difference of patient skin and the measurement conditions by two proposed methods, inside mean centering and inside multiplicative signal correction (MSC). These two methods are different from the normal mean centering and normal multiplicative signal correction (MSC) that are usually performed to spectra in the calibration set, while inside mean centering and inside MSC are performed to the spectra in every oral glucose intake experiment. With this procedure, spectral variations resulted from the measurement conditions, and human body features will be reduced significantly. More than 3000 NIR spectra were collected during 68 oral glucose intake experiments, and calibrated. The development of PLS calibration models using the spectra show that the prediction errors can be greatly reduced. This is a potential chemometric technique with simplicity, rapidity and efficiency in the pretreatment of NIR spectra collected during oral glucose intake experiments.  相似文献   

17.
色散型拉曼光谱仪易受到温度影响,使测得的光谱重复性变差。针对这个问题,本研究提出了基于高斯函数卷积的温度校正方法。利用标准物质获得光谱仪在不同温度下的仪器响应函数,并以此构造高斯函数,通过卷积运算对温度造成的波数漂移以及分辨率变化进行校正。本方法直接基于拉曼谱分析,机理性强,且无需测量大量样本。利用苯作标准物质,对间二甲苯与汽油样本的拉曼光谱进行温度校正。结果表明,本方法能有效去除温度对色散型拉曼光谱仪的影响,使得不同温度下测得的光谱一致性显著提高。  相似文献   

18.
In column liquid chromatography (LC) coupled to conventional Raman spectroscopy (RS) removal of the spectral background of the eluent is often demanding, because of the strong signals of the organic modifier. A new chemometrical method is proposed, called the eluent background subtraction (EBS) method, which can correct for small shape and intensity differences of the eluent spectra. The variations in the eluent spectra are modelled using principal component analysis (PCA). The PCA loading vectors are subsequently used for eluent background correction of the elution spectra of the analyte. The loading vectors are fitted under these spectra by an asymmetric least-squares method. This method was successfully applied under various experimental conditions and performed much better than conventional background correction methods. Analyte detectability was improved by (weighted) averaging of all elution spectra and smoothing via a p-spline function.  相似文献   

19.
The interactions of rare gas atoms (Rg = Ar, Kr, and Xe) with small neutral and cationic silver clusters have been investigated by density functional methods and the effect of these weak interactions on the resonance Raman spectra of the complexes has been evaluated. The resonance Raman technique that depends on the properties of ground and excited state, seems deeply sensitive to the weak rare gas–metal cluster interactions, and the use of inert gases has been proven to be an excellent approach to recognize the ability of this technique to detect extremely weak interactions. In this work, for , and complexes the IR, normal and resonance Raman spectra have been calculated and the effect of rare gas–cluster stretching vibration ( ) on the pattern and the relative intensities of different spectra have been investigated. The resonance Raman spectra for the weakly interacted complexes (with the interaction energies less than ?2.0 kcal/mol) exhibit the vibration with the detectable intensity that its intensity increases by going from Ag6–Ar to Ag6–Xe complex. Moreover, the resonance Raman spectra (based on the excited state gradient approximation) for high intensity nearly degenerate excited states, proved the effect of accumulation of the excited state charge density on the relative intensity of vibration.  相似文献   

20.
Partial least squares (PLS) models of 10 important jet and diesel fuel properties were built using spectra from a master near‐IR dispersive instrument and then subsequently transferred to a secondary dispersive instrument via a novel calibration transfer method using virtual standards and a slope‐bias correction. Implementation of the transfer requires that only seven spectra of neat solvents be acquired on the master and secondary instruments. The spectra of the neat solvents are then used to digitally replicate spectra from the calibration set to generate virtual standards. Comparison of PLS predictions for the master and secondary instrument virtual standards provides a simple but effective slope‐bias correction for transfer. The transferred fuel properties include American Petroleum Institute gravity, % aromatics, cetane index, flashpoint, hydrogen content, % saturates, and distillation temperatures at 10%, 20%, 50%, and 90% volume recovered. Transfer error was lower than using either the pure solvents with a slope‐bias correction or than using a piecewise direct standardization calibration transfer using fuel spectra. Transfer error was higher than when using actual fuels to transfer the calibration. The use of virtual standards eliminates the need to maintain either complex fuel standards or the master instrument for future instrument calibration transfers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号