首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Purpose

This study was done to test a series of MR sequences for evaluating the sciatic nerve after total hip arthroplasty (THA).

Material and Methods

The study protocol was approved by the institutional review board. Informed consent was obtained from all patients. Twenty-five patients (11 men and 14 women mean age: 62.3±5.7 years) with THA were included in this prospective study. MRI protocol included sequences that were preliminarily tailored for nerve imaging in patients with THA: proton density (PD)-weighted turbo SE, T1-weighted turbo SE (TSE) 3 mm thickness, T1-weighted turbo SE (TSE) 6 mm thickness, T1-weighted turbo SE with high bandwidth (TSE hBW), T2- weighted TSE, T2-weighted with fat saturation and short-tau inversion recovery (STIR). For each sequence, we evaluated the visibility of the sciatic nerve using a semiquantitative score (0=total masking; 1=insufficient visibility; 2=sufficient visibility; 3=optimal visibility). The sum of the scores given to each sequence was divided by the maximal sum, obtaining a percentage visibility index. Friedman and sign tests were used for statistical analysis.

Results

MR examination time was approximately 40 min. No patients reported pain, heat or symptoms related to nerve stimulation. The visibility index ranged between 88% and 70% for the first four sequences. The T1-weighted TSE hBW sequence had the best visibility index (P<.05). The visibility indexes of the first four sequences were significantly higher (P<.004, sign test) than those of the remaining three sequences.

Conclusion

The sciatic nerve could be studied at 1.5 T in patients following THA. The nerve is better visualized with T1-weighted TSE hBW sequences. On T2-weighted sequences and STIR, the visibility of the nerve is low.  相似文献   

2.
In view of follow up, survey and development of therapeutic strategies for osteoarthritis where cartilage deterioration plays an important role, a non invasive, reliable and quantitative assessment of the articular cartilage is desirable. The currently available high resolution T(1)-weighted (T1-w) 3D FLASH pulse sequences with frequency selective fat suppression are very time consuming. We have 1) optimized a high resolution T1-w 3D FLASH water excitation (WE) sequence for short acquisition time and cartilage visualization, and 2) validated this sequence for cartilage volume and thickness quantification. The spectral fat presaturation was replaced by selective water excitation. The flip angle of the WE sequence was optimized for the contrast to noise (C/N(cart)) ratio of cartilage. Sagittal datasets (voxel size: 0.31 x 0.31 x 2 mm(3)) of the knees of nine healthy volunteers were acquired both, with the 3D FLASH WE (17.2/6.6/30 degrees ) sequence (WE) and a previously validated 3D FLASH fat saturated (42/11/30 degrees ) sequence (FS). For validation of the WE sequence, cartilage volume, mean and maximal cartilage thickness of the two sequences were compared. Reproducibility was assessed by calculating the coefficient of variation (COV %) of 4 consecutive WE data sets in the volunteers. The acquisition time was reduced from 16'30" (FS) down to 7'14" for the WE sequence. Image contrast and visualization of the cartilage was very similar, but delineation of the basal layer of the cartilage was slightly improved with the WE sequence. A flip angle of 30 degrees provided the best C/N(cart) ratios (WE). Reproducibility (COV) was between 1.9 and 5.9%. Cartilage volume and thickness agreed within 4% between FS and WE sequence. The WE sequence allows for rapid, valid and reproducible quantification of articular cartilage volume and thickness, prerequisites for follow-up examinations. The reduced acquisition time (50% of FS) enables routine clinical application and thus may contribute to a broader assessment of osteoarthritis.  相似文献   

3.
ObjectivesTo evaluate the diagnostic performance of a new three-dimensional T1-weighted turbo-spin-echo sequence (3D T1-w TSE) compared to 3D contrast-enhanced angiography (CE-MRA) for stenosis measurement and compared to 2D T1-w TSE for intra-plaque hemorrhage (IPH) detection.MethodsEighty three patients underwent carotid MRI, using a new elliptic-centric phase encoding T1-weighted 3D TSE sequence in addition to the clinical protocol.Two observers evaluated image quality, presence of flow artifacts, and presence of intra-plaque hemorrhage, and computed the NASCET degree of stenosis for CE-MRA and for the new sequence. Inter-observer agreement and correlation between 3D TSE and CE-MRA for NASCET stenosis was estimated using Cohen's kappa, and correlation using linear regression and Bland-Altman plots.Histology was performed on endarterectomy samples for 18 patients. Sensitivity and specificity of 2D and 3D TSE for IPH diagnosis were computed.Results3D TSE showed better image quality than 2D TSE (p < 0.05). Interobserver agreement was good (kappa  0.86). Correlation between 3D TSE and CE-MRA was excellent (R = 0.95) for NASCET stenosis. Sensitivity and specificity for IPH diagnosis was 50% and 100% for 2D TSE and 100% and 83% for the 3D TSE.ConclusionsThe new 3D T1-w TSE allows both reliable measures of carotid stenosis, with a slight overestimation compared to CE-MRA (5%), and improved IPH identification, compared to 2D TSE.  相似文献   

4.
To evaluate changes in capsular mechanisms and the labroligamentous complex with magnetic resonance arthrography (MRA) after shoulder surgery and to establish possible criteria for the expected post-operative appearance of the shoulder. MRA of the shoulder was performed in 16 patients, before and 6 months after undergoing arthroscopic surgery for recurrent unidirectional dislocation. MR studies were performed after application of a constant amount of contrast solution (2 mmol Gd-DTPA). Axial and coronal oblique T1-weighted images were obtained with and without fat suppression techniques. Anterior (a) and posterior (p) capsular distances were measured, and the p/a ratio was established. Capsule thickness, capsular leaking, estimation of the volume of the axillary recess, appearance of the glenohumeral ligaments, and evidence of labral lesions were compared on pre- and postoperative images. Mean anterior capsular distance (a) decreased from 9.73 +/- 1.03 mm preoperatively to 5.27 +/- 2.49 mm postoperatively, whereas dorsal capsular distance (p) increased from 6.13 +/- 2.36 to 8.93 +/- 2.37. The p/a ratio increased from 0.64 +/- 0.25 to 2.36 +/- 2.54 (p = 0.007). Capsular leaking was suspected preoperatively in seven patients, but was not evident postoperatively. Capsular thickness and the estimated volume in the axillary recess did not change significantly. Contrast extension into pre-existent labral tears (nine patients) decreased or were not evident postoperatively. Changes in the appearance of the glenohumeral ligaments were found in six patients. Changes in capsular distances might be indicative of a decreased capsular laxity and could be a valuable criterion in the evaluation of the postoperative shoulder. Postoperative follow-up of labral tears is demonstrated by a decrease in contrast extension into or under a tear. Reactive capsular thickening or scar tissue formation can be reactive or preexistent. Changes in ligaments might be secondary to surgery. MRA may be helpful in the reevaluation of patients with suspected recurrent instability.  相似文献   

5.
The purpose of this study was to compare the diagnostic efficacy of a newly developed T(1)-weighted three-dimensional segmented echo planar imaging (3D EPI) sequence versus a conventional T(1)-weighted three dimensional spoiled gradient echo (3D GRE) sequence in the evaluation of brain tumors. Forty-four patients with cerebral tumors and infections were examined on a 1.0 T MR unit with 23 mT/m gradient strength. The total scan time for the T(1) 3D EPI sequence was 2 min 12 s, and for a conventional 3D GRE sequence it was 4 min 59 s. Both sequences were performed after administration of a contrast agent. The images were analyzed by three radiologists. Image assessment criteria included lesion conspicuity, contrast between different types of normal tissue, and image artifacts. In addition, signal-to-noise and contrast-to-noise-ratio (C/N) were calculated. The gray-white differentiation and C/N ratio of 3D EPI were found to be inferior to conventional 3D GRE images, but the difference was not statistically significant. In the qualitative comparison, lesion detection and conspicuity of 3D EPI images and conventional 3D GRE images were similar, but a tow-fold reduction of the scanning time was obtained. With the 3D EPI technique, a 50% scan time reduction could be achieved with acceptable image quality compared to conventional 3D GRE. Thus, the 3D EPI technique could replace conventional 3D GRE in the preoperative imaging of brain.  相似文献   

6.
The purpose of this study, is to compare the sequences: 1) proton density (PD) BLADE (BLADE is a PROPELLER-equivalent implementation of the Siemens Medical System) with fat saturation (FS) coronal (COR), 2) PD FS COR, 3) multi-planar reconstruction (MPR) with 3 mm slice thickness and 4) multi-planar reconstruction (MPR) with 1.5 mm slice thickness, both from the T2 3D-double-echo steady state (DESS) with water excitation (WE) sagittal (SAG), regarding their abilities to identify changes in the femorotibial condyle cartilage in knee MRI examinations. Thirty three consecutive patients with osteoarthritis (18 females, 15 males; mean age 56 years, range 37–71 years), who had been routinely scanned for knee examination using the previously mentioned image acquisition techniques, participated in the study. A quantitative analysis was performed based on the relative contrast (ReCON) measurements, which were taken both on normal tissues as well as on pathologies. Additionally, a qualitative analysis was performed by two radiologists. Motion and pulsatile flow artifacts were evaluated. The PD BLADE FS COR sequence produced images of higher contrast between Menisci and Cartilage, Fluid and Cartilage, Pathologies and Cartilage as well as of the Conspicuousness Superficial Cartilage and it was found to be superior to the other sequences (p < 0.001). The sequences T2 3D DESS 1.5 mm and T2 3D DESS 3 mm were significantly superior to the PD BLADE FS COR and the PD FS COR sequences in the visualization of Bone and Cartilage and the Conspicuousness Deep Surface Cartilage. This pattern of results is also confirmed by the quantitative analysis. PD FS BLADE sequences are ideal for the depiction of the cartilage pathologies compared to the conventional PD FS and T2 3D DESS sequences.  相似文献   

7.

Purpose

The aim of this study was to determine the adequate MR sequence for the lesion conspicuity of hepatocellular lesions with increased iron uptake on superparamagnetic iron oxide (SPIO)-enhanced MRI.

Materials and Methods

SPIO-enhanced MRI was performed using a 1.5-T system. Among 25 patients with hypovascular hepatocellular nodules on contrast-enhanced dynamic CT (no early enhancement at arterial phase and hypoattenuation at equilibrium phase), 39 lesions with increased iron uptake on SPIO-enhanced MRI were evaluated. SPIO-enhanced MRI included (1) T1-weighted in-phase gradient recalled echo (GRE) images, (2) T2-weighted fast spin echo (FSE) images, (3) T2*-weighted GRE with moderate TE (7 ms) and (4) long TE (12 ms). The lesion-to-liver contrast-to-noise ratios of the hepatocellular nodule and the signal-to-noise ratio (SNR) of the hepatic parenchyma were calculated by one radiologist for a quantitative assessment. MR images were reviewed retrospectively by two independent radiologists to compare the subjective lesion conspicuity in each image set based on a four-point rating scale.

Result

The mean lesion-to-liver contrast-to-noise ratios with T2*-weighted GRE with moderate TE (7 ms) was highest (5.79±3.71) and was significantly higher than those with T1-weighted, in-phase images (3.79±3.23, P<.01), T2-weighted images (2.72±1.52, P<.001) and T2*-weighted GRE with long TE (12 ms) (3.93±2.69, P<.05). The subjective rating of lesion conspicuity was best on the T2*-weighted GRE with moderate TE (7 ms), followed by that on the T2*-weighted GRE with moderate TE (7 ms; P<.05).

Conclusion

T2*-weighted GRE sequence with moderate TE (7 ms) showed high lesion-to-liver contrast-to-noise ratios in hepatocellular lesions with increased iron uptake on SPIO-enhanced MRI, indicating better lesion conspicuity of hypointense hepatocellular nodules in cirrhosis or chronic hepatitis.  相似文献   

8.
MR imaging of cervical spine motion with HASTE   总被引:2,自引:0,他引:2  
The HASTE (half-Fourier acquisition single-shot turbo spin-echo) technique delivers images with T2-weighting in about half a second and could be ideal for fast dynamic studies when T2-weighting is needed. We evaluated cardiac-triggered HASTE to study cervical spine flexion/extension. The cervical spines of ten asymptomatic volunteers were studied during flexion/extension motion on a 1.5 Tesla imager using a cardiac triggered version of the HASTE technique. Midline sagittal images were acquired every 2 to 3 s during neck flexion and extension. Image quality was compared to traditional T2-weighted Turbo spin-echo. The study duration per flexion/ extension was typically less than 20 seconds and well tolerated. The cardiac-gated T2-weighted HASTE images compared favorably to the traditional T2-weighted TSE images in quality and overall anatomic detail. Range of motion averaged: flexion 30 degrees (range 8 degrees -48 degrees) and extension 23 degrees (range 0 degrees -57 degrees ). Greatest motion occurred in the lower cervical spine (C4-C7). At the intervertebral discs the canal diameter, anterior and posterior CSF spaces were widest in neutral position and decreased with flexion and extension. Therefore, Cardiac-gated T2 HASTE sequences provide diagnostic and time-efficient dynamic MR images of cervical spine motion.  相似文献   

9.

Purpose

Lesions close to the internal craniocervical ligaments are a common problem in patients with whiplash injuries. The aim of this study was to evaluate the morphology and visibility of these ligamentous structures with a new isotropic three-dimensional (3D) turbo-spin-echo (TSE) technique.

Materials and Methods

MR (MR) images of the cervical spine of 52 healthy subjects (27 women and 25 men; mean age=29 years; age range=18–40 years) were taken with a T2-weighted 3D TSE sequence with variable flip-angle distribution [SPACE (Sampling Perfection with Application optimized Contrasts using different flip-angle Evolution)] at 1.5 T (Magnetom Avanto, Siemens Erlangen, Germany). Two experienced musculoskeletal radiologists read the images independently on a 3D imaging and postprocessing workstation. The visibility and morphology of the alar ligaments were evaluated on a five-point scale, and inter-reader correlation was assessed with kappa statistics.

Results

Both alar ligaments were detected in all subjects. Twenty-eight (53.8%) of the alar ligaments could not be seen within one slice of the standard coronal imaging plane but could adequately be visualized in an oblique reconstruction adapted to the orientation of the ligaments on the axial slices. Inter-reader correlation for visibility on MR imaging (MRI) of the internal craniocervical ligaments was high (left+right side, kappa=0.95). Most (94%) alar ligaments presented symmetrically. In the axial plane, 60% were oriented neutral and 40% had a backward orientation. In the coronal plane, 67% were oriented caudocranially and 33% were oriented horizontally. The shape of the ligaments was parallel in half and was V-shaped in the other half. The alar ligaments had homogeneous low-signal intensity in 56% and heterogeneous low-signal intensity in 44%. The apical ligament of the dens was seen (excellent–good–moderate) in 61% (reader 1) and 52% (reader 2). The tectorial membranes and the transverse ligament of the atlas were shown (excellent–good) in all subjects.

Conclusions

MRI with acquisition of an isotropic SPACE technique allows high-resolution imaging of the craniocervical ligaments in all orientations. Reconstruction of the image data in the variable orientation of the alar ligaments allowed for excellent depiction within one slice such that partial volume artifacts that hamper image analysis can be eliminated.  相似文献   

10.
A fast method to obtain 3-dimensional (3D) magnetic resonance imaging with long repetition times is presented. It can be used to obtain fast 3D MRI with for example T(2) or diffusion weighted imaging. The method uses a 3D multiple thin slab sequence with radio frequency encoding, preferably Hadamard encoding, in the slice select direction. The point-spread function of the Hadamard-encoded slices is close to ideal even at low encoding numbers. This allows the acquisition of 3D data volumes with tolerable image quality up to four times faster than is possible using Fourier phase encoding. The scope of the method includes both longitudinal and transverse encoding. Longitudinal encoding provides a better point spread function than transverse encoding, at the expense of having to discard one slice per slab. The method is demonstrated experimentally for 4th order longitudinal Hadamard encoding to obtain 3D T(2)-weighted images.  相似文献   

11.
The osteochondral junction (OCJ) of the knee joint is comprised of multiple tissue components, including a portion of the deep layer cartilage, calcified cartilage, and subchondral bone. The OCJ is of increasing radiological interest as it may be relevant in the early pathogenesis of osteoarthritis (OA). Due to its short transverse relaxation, the OCJ is invisible to clinical MR sequences. The purpose of this study was to develop a fast 3D T1-weighted ultrashort echo time cones sequence with fat saturation (FS-UTE-Cones) for high resolution and high contrast imaging of the OCJ on a clinical 3T scanner. First, numerical simulations were performed to investigate how the flip angle affected the signal intensities and contrasts of both short and long T1 tissues. The results from these simulations demonstrated that higher short T1 contrast could be achieved with higher flip angle. Next, T1 relaxation was measured for the different layers of a human patellar cartilage sample, and the results showed that the deepest layer had a significantly shorter T1 value than other layers. Finally, a healthy knee joint was scanned with different flip angles and the OCJ was highlighted in the T1-weighted FS-UTE-Cones sequence using a flip angle greater than 20°. The clinical T2-weighted and proton density-weighted FSE sequences were also included for comparison, revealing a dark OCJ region. Representative T1-weighted FS-UTE-Cones images of the whole knee of a healthy volunteer showed high signal intensity bands in the OCJ regions of the patella, femur, and tibia. On the other hand, T1-weighted FS-UTE-Cones imaging of the knee joints of OA patients revealed regions with reduction or loss of these high signal intensity bands in the OCJ regions, indicating abnormal OCJ tissue composition. The proposed 3D T1-weighted FS-UTE-Cones sequence with a 3-min scan time may be very useful for demonstrating the involvement of the OCJ regions in early OA.  相似文献   

12.
High-resolution water, fat and chemical shift artefact-free images of different areas of the skin were obtained on a whole-body MR unit (1.5 T) with commercial receiver surface coil with a diameter of 25 mm and high-power gradients (23 mT/m). Sufficient signal-to-noise ratio was achieved by lowering receiver bandwidth to +/-10 kHz or lower and shortening the echo time to 11 (13) ms. Spectroscopic image data sets were acquired with resolution 0.102 x 0.133 mm in plane and slice thickness 0.5 mm. The results demonstrate that it is possible to produce high-quality water and fat micro-images of the skin layers using only a few chemical shift encoding steps in a clinically reasonable time (approximately 2 minutes per slice).  相似文献   

13.
PURPOSE: To evaluate the feasibility of an optimized bright blood MRI protocol at 3 T in combination with contrast agent administration for the detection and characterization of aortic high-risk plaques for the improved workup of acute stroke patients. MATERIALS AND METHODS: ECG synchronized T1-weighted 3D gradient echo MRI was performed in 45 acute stroke patients. Data were acquired with high near isotropic spatial resolution (approximately 1 mm(3)) covering the entire thoracic aorta. To compensate for breathing and vessel motion artifacts, images were collected using respiratory navigator gating in combination with short diastolic data acquisition windows adjusted on a patient-by-patient basis. In patients with aortic plaques > or =3 mm in thickness, gadolinium contrast agent was administered and both pre- and post-contrast T1-weighted 3D measurements with identical vessel coverage were performed. RESULTS: Bright blood 3D MRI detected 33 high-risk plaques with an average maximum plaque thickness of 4.2+/-1.0 mm in 23 of 45 acute stroke patients. The availability of pre- and post-contrast images acquired within the same session enhanced the identification of calcified plaque components in 77% of all analyzed plaques: post-contrast MRI clearly improved the delineation of hypointense plaque cores in 23 of 30 cases and assisted in the classification of core shape and of core fraction. CONCLUSION: 3D bright blood MRI at 3 T was feasible for the detection of aortic high-risk sources and may help to improve the detection of causes of cerebral embolism in acute stroke patients.  相似文献   

14.
PurposeTo improve the signal-to-noise ratio (SNR) and image sharpness for whole brain isotropic 0.5 mm three-dimensional (3D) T1 weighted (T1w) turbo spin echo (TSE) intracranial vessel wall imaging (IVWI) at 3 T.MethodsThe variable flip angle (VFA) method enables useful optimization across scan efficiency, SNR and relaxation induced point spread function (PSF) for TSE imaging. A convolutional neural network (CNN) was developed to retrospectively enhance the acquired TSE image with PSF blurring. The previously developed VFA method to increase SNR at the expense of blur can be combined with the presented PSF correction to yield long echo train length (ETL) scan while the acquired image remains high SNR and sharp. The overall approach can enable an optimized solution for accelerated whole brain high-resolution 3D T1w TSE IVWI. Its performance was evaluated on healthy volunteers and patients.ResultsThe PSF blurred image acquired by a long ETL scan can be enhanced by CNN to restore similar sharpness as a short ETL scan, which outperforms the traditional linear PSF enhancement approach. For accelerated whole brain IVWI on volunteers, the optimized isotropic 0.5 mm 3D T1w TSE sequence with CNN based PSF enhancement provides sufficient flow suppression and improved image quality. Preliminary results on patients further demonstrated its improved delineation for intracranial vessel wall and plaque morphology.ConclusionThe CNN enhanced VFA TSE imaging enables an overall image quality improvement for high-resolution 3D T1w IVWI, and may provide a better tradeoff across scan efficiency, SNR and PSF for 3D TSE acquisitions.  相似文献   

15.
The purpose of this study was to describe the magnetic resonance imaging (MRI) appearance of hepatic alveolar echinococcosis (HAE) on T(1)-weighted, T(2)-weighted and postgadolinium images. A total of 13 lesions were demonstrated in 13 patients. All patients underwent MR examination at 1 T imager. MR examinations included precontrast T(1)-weighted breathing averaged spin echo (SE), breath-hold spoiled gradient echo, T(2)-weighted TSE sequences with and without fat suppression, and T(1)-weighted breath-hold spoiled gradient echo (SGE) sequence following i.v. after gadolinium administration. All lesions were confirmed with histopathology. HAE hepatic lesions revealed geographic patterns of variable signal intensities on noncontrast T(1)- and T(2)-weighted images. Slightly hyperintense, iso- and hypointense signal on T(1)-weighted images corresponded to calcified regions, which appeared hypo-isointense signal on T(2)-weighted images. Necrotic areas were hypointense signal on T(1)-weighted and hyperintense signal on T(2)-weighted images. On postgadolinium images, lesions did not reveal enhancement. Dilatation of intrahepatic bile ducts distal to HAE abscesses were observed in five patients and portal vein invasion or compression was observed in four patients, lobar atrophy of the liver was coexistent finding in cases with portal vein compression. The MRI appearance of HAE abscesses included large irregularly marginated masses with heterogenous signal on T(1)- and T(2)-weighted images and lack of enhancement with gadolinium.  相似文献   

16.
PurposeTo implement a fast (~ 15 min) MRI protocol for carotid plaque screening using 3D multi-contrast MRI sequences without contrast agent on a 3 Tesla MRI scanner.Materials and methods7 healthy volunteers and 25 patients with clinically confirmed transient ischemic attack or suspected cerebrovascular ischemia were included in this study. The proposed protocol, including 3D T1-weighted and T2-weighted SPACE (variable-flip-angle 3D turbo spin echo), and T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) was performed first and was followed by 2D T1-weighted and T2-weighted turbo spin echo, and post-contrast T1-weighted SPACE sequences. Image quality, number of plaques, and vessel wall thicknesses measured at the intersection of the plaques were evaluated and compared between sequences.ResultsAverage examination time of the proposed protocol was 14.6 min. The average image quality scores of 3D T1-weighted, T2-weighted SPACE, and T1-weighted magnetization prepared rapid acquisition gradient echo were 3.69, 3.75, and 3.48, respectively. There was no significant difference in detecting the number of plaques and vulnerable plaques using pre-contrast 3D images with or without post-contrast T1-weighted SPACE. The 3D SPACE and 2D turbo spin echo sequences had excellent agreement (R = 0.96 for T1-weighted and 0.98 for T2-weighted, p < 0.001) regarding vessel wall thickness measurements.ConclusionThe proposed protocol demonstrated the feasibility of attaining carotid plaque screening within a 15-minute scan, which provided sufficient anatomical coverage and critical diagnostic information. This protocol offers the potential for rapid and reliable screening for carotid plaques without contrast agent.  相似文献   

17.
An optimized 3D inversion recovery prepared fast spoiled gradient recalled sequence (IR FSPGR) on a 3-T scanner for carotid plaque imaging is described. It offers clear blood and fat signal suppression at the carotid artery bifurcation and highlights the regions of carotid plaque affected by hemorrhage at 3 T with high contrast and contrast-to-noise ratio compared with other sequences. It can potentially be used to replace the more traditional noncontrast T1-weighted 2D black-blood imaging for hemorrhage detection and offers additional benefits of high-resolution 3D volumetric visualization.  相似文献   

18.
Short TI inversion-recovery (STIR) imaging provides specific advantages over standard spin-echo (SE) MR sequences by producing additive effects of T1 and T2 brightening of pathology and suppression of the signal from surrounding fat. We retrospectively evaluated 12 patients with abnormalities, primarily neoplastic, of the porta hepatis/hepatoduodenal ligament (PH/HdL) with CT and MR imaging, including SE and STIR imaging. Masses on CT were of slightly decreased density compared to liver and seen in contrast to surrounding fat in the PH/HdL region. On MR, T1-weighted images provided comparable anatomic detail to CT, with masses clearly distinguished from surrounding fat due to the low signal intensity of masses as compared to fat. T2-weighted images clearly depicted intrahepatic lesions because of their high signal intensity relative to liver. Increased signal in extrahepatic lesions made them less distinctly seen from surrounding fat. STIR images best demonstrated tumor relative to fat. In six cases, CT was equivalent in demonstrating pathology to the best MR sequence. At least one MR sequence demonstrated pathology better than CT in 6 of 12 cases. In five of these six cases, the STIR sequence was better than CT. Thus, MR, particularly STIR imaging, provides a useful technique in imaging of PH/HdL pathology.  相似文献   

19.
High b-value diffusion magnetic resonance imaging (MRI) enables us to detect far smaller architectures, by using q-space analysis, than the resolution in conventional MRI. Average displacement, one of the q-space parameters, quantitatively reflects architecture size and is very useful in observing small changes in microstructures in vivo (e.g., neurodegeneration, tumor heterogeneity, and others). Diffusion-weighted imaging (DWI) is performed by a two-dimensional (2D) multislice method; however, due to finite slice thickness and slice gap, there is a partial-volume effect that makes it difficult to detect the net q-space signal. On the other hand, three-dimensional (3D) MRI, having the advantages of very thin slice thickness and no slice gap (contiguous slices), allows volumetric evaluation acquired in a small isotropic voxel, as compared to 2D multislice imaging. Little is known about the isotropic high-resolution 3D DWI application to q-space analysis. In this study, we have developed and implemented a high b-value 3D DWI sequence, applied q-space analysis to study the reliability of high b-value 3D DWI and obtained a microscopic analytical map with isotropic high resolution and less contamination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号