首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
Inelastic scattering of α-particles can excite the isovector giant dipole resonance (GDR) via the Coulomb interaction. In spite of their isoscalar nature α-particles can also excite the GDR via the nuclear interaction due to the difference in the radii of the neutron and proton density distributions. The absolute cross section to excite the GDR in inelastic α-scattering is therefore a measure of this radial difference, the so-called neutron-skin thickness. Furthermore, since the GDR strength distribution has a centroid energy which depends on the nuclear radius, these studies, when performed in deformed nuclei, can measure the neutron-skin thickness along both the short and the long axes independently. Results of an experiment performed at KVI atE α=120 MeV and small scattering angles, including 0°, to determine the neutron-skin thickness in208Pb,116Sn,124Sn, and the deformed150Nd are discussed and compared to earlier measurements and theoretical predictions. Future improvements in the experimental set-up are also discussed.  相似文献   

2.
The radial distributions of proton and neutron densities in the even–even isotopes 40?70Cа and 48?78Ni and the analogous distributions of neutron densities in the even–even isotopes 92?138Mo were calculated on the basis of the mean-fieldmodel involving a dispersive optical potential. The respective root-mean-square radii and neutron-skin thicknesses were determined for the nuclei under study. In N > 40 calcium isotopes, the calculated neutron root-mean-square radius exhibits a fast growth with increasing N, and this is consistent with the prediction of the neutron-halo structure in calcium isotopes near the neutron drip line.  相似文献   

3.
A femtosecond stimulated photon echo is detected for the first time in thin semiconductor films with thicknesses of 100, 800, and 2400 nm. It is established that relaxation time T 1 varies with ZnO film thickness, taking values of 0.96, 2.96, and 4.312 ps at thicknesses of 2400, 800, and 100 nm, respectively. For ZnO/Si+/Si? trilayer films, the relaxation time is T 1 = 12.73 ps.  相似文献   

4.
The oxide growth rate for p-type Si〈100〉 crystals after HF etching in air at room temperature was measured for exposures betwen 3 min and ≈ 103 min after etching. The oxide thicknesses were determined with traditional Al Kα excited XPS and two nontraditional methods — especially suited for very thin layers: Zr Mζ excited XPS and neutron activation analysis (NAA). The oxide thicknesses (mainly SiOx with x < 2) lie between 0.1 and 0.55 nm with a logarithmic growth rate of ≈ 0.2 nm/decade.  相似文献   

5.
Measurements ofdc-resistance, surface resistance at 9.6 GHz and x-ray diffraction were made on Nb3Sn layers having thicknesses between 4 and 7 μ. Samples were prepared by condensing tin on niobium foil which was then annealed at high temperature. This process was repeated, in some cases as many as twenty times. The best samples showed steep transition curves close to 18.2 K. X-ray measurements indicated a high degree of stoechiometry. The surface resistance decreased from 5 · 10?2Ω atT c to a residual value of 3 · 10?4 Ω. This relatively high value can be due to minor deviations from stoechiometry or possibly to similar mechanisms as proposed for pure elements.  相似文献   

6.
AlN with different thicknesses were grown as interlayers (ILs) between GaN and p-type Al0.15Ga0.85N/GaN superlattices (SLs) by metal organic vapor phase epitaxy (MOVPE). It was found that the edge-type threading dislocation density (TDD) increased gradually from the minimum of 2.5×109?cm?2 without AlN IL to the maximum of 1×1010?cm?2 at an AlN thickness of 20 nm, while the screw-type TDD remained almost unchanged due to the interface-related TD suppression and regeneration mechanism. We obtained that the edge-type dislocations acted as acceptors in p-type Al x Ga1?x N/GaN SLs, through the comparison of the edge-type TDD and hole concentration with different thicknesses of AlN IL. The Mg activation energy was significantly decreased from 153 to 70?meV with a?10-nm AlN IL, which was attributed to the strain modulation between AlGaN barrier and GaN well. The large activation efficiency, together with the TDs, led to the enhanced hole concentration. The variation trend of Hall mobility was also observed, which originated from the scattering at TDs.  相似文献   

7.
Electron tunneling has been used to study the electron-phonon interaction in PbCd proximity effect samples by injecting electrons into Pb side. For Pb thicknesses ranging from 950 to 330 Å, the phonon structure occurs at the same energy as bulk Pb and the magnitude of the structure scales as Tc2. The shape of the phonon spectral function, α2F(ω), remains essentially unchanged even though Tc has been depressed by 35%.  相似文献   

8.
The yields of near-zero-energy e0 electrons from sources of different thickness in the 64Cu decay have been measured. At small thicknesses of the 64Cu source, the e0-electron yield Y e sharply increases and is qualitatively described by the dependence Y er ?2, where r is the distance from the point of charge formation to the source surface.  相似文献   

9.
The spectrum of standing spin waves has been detected by the ferromagnetic resonance method in NiFe(740 Å)/Cu/NiFe(740 Å) three-layered film structure in the perpendicular configuration for the copper thickness d Cu ≤ 30 Å. At thicknesses d Cu > 30 Å, the resonance absorption curve is a superposition of two spinwave resonance spectra from individual ferromagnetic NiFe layers. For Co/Pd multilayer films, united spinwave responance spectra have also been observed at thicknesses of the paramagnetic palladium layer up to d Pd < 30 Å. The partial exchange stiffness has been calculated for a spin wave propagating across the Pd layer (A Pd = 0.1 × 10?6 erg/cm). This value is always positive (up to the critical thickness of the palladium interlayer d Pd < d c) or equal to zero (d Pd > d c).  相似文献   

10.
X.X. Guo 《Surface science》2004,549(3):211-216
We studied parallel conductivities of pure BaF2 films with thicknesses ranging from 35 to 300 nm, epitaxially grown on Al2O3(0 1 2) substrates by molecular beam epitaxy technique. The overall conductivities of the films are found to increase with decreasing thickness. The detailed investigation of the overall conductance as a function of the thickness permits the deconvolution of bulk and boundary effects, the latter being attributed to distinct space charge effects in the interface between BaF2 film and Al2O3 substrate. The (extrinsic) Debye length (λ) is estimated to be about 8 nm at T=593 K, which corresponds to an impurity content of 1018/cm3 (singly ionized dopant assumed). This is consistent with the fact that we observed a constant boundary contribution for all investigated films (film thickness >4λ). It is also consistent with the Debye length observed in a previous report on CaF2/BaF2 heterolayers fabricated by the same technique, in which the low temperature enhancement was also attributed to space charges in BaF2 [Nature 408 (2000) 946]. Only at low temperatures (below 370 °C), the conductance seems to be influenced by strain effect.  相似文献   

11.
《Nuclear Physics A》1999,645(1):3-12
The elastic scattering of α-particles from 32S was studied in the incident energy range between 4 and 8.9 MeV. In order to ascertain whether quasi-molecular states exist, as predicted in the α-32S system, excitation functions were measured, and angular distribution measurements were carried out using targets with different thicknesses in the angular range from θlab = 30° to 175° at each extreme in the excitation functions. The analysis of the angular distribution data at back angles was performed using the Regge-pole method. A resonance with J = 3 was observed at 7.7 MeV in the α-32S system. Evidence was also found for both a broad resonance which can be characterized by an angular momentum J = 1, and for a narrow J = 2 resonance.  相似文献   

12.
《Applied Acoustics》2007,68(11-12):1502-1510
Al–Si closed-cell aluminum foam sandwich panels (1240 mm × 1100 mm) of different thicknesses and different densities were prepared by molten body transitional foaming process in Northeastern University. The experiments were carried out to investigate the sound insulation property of Al–Si closed-cell aluminum foam sandwich panels of different thicknesses and different densities under different frequencies (100–4000 Hz). Results show that sound reduction index (R) is small under low frequencies, large under high frequencies; thickness affects the sound insulation property of material obviously: when the thicknesses of Al–Si closed-cell aluminum foam sandwich panels are 12, 22, and 32 mm, the corresponding weighted sound reduction indices (RW) are 26.3, 32.2, and 34.6 dB, respectively, the rising trend tempered; the increase of density of Al–Si closed-cell aluminum foam can also increase the sound insulation property: when the densities of aluminum foam are 0.31, 0.51, and 0.67 g/cm3, the corresponding weighted sound reduction indices (RW) are 28.9, 34.3, and 34.6 dB, the increasing value mitigating.  相似文献   

13.
We investigated the superconducting properties of Fe1+y Te0.6Se0.4 single-crystalline microbridges with a width of 4 μm and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistance of the bridges exhibited a type of metal-insulator transition in the normal state. The critical current density (J c) of the microbridge with a thickness of 136.2 nm was 82.3 kA/cm2 at 3K and reached 105 kA/cm2 after extrapolation to T = 0 K. The current versus voltage characteristics of the microbridges showed a Josephson-like behavior with an obvious hysteresis. These results demonstrate the potential application of ultra-thin Fe-based microbridges in superconducting electronic devices such as bolometric detectors.  相似文献   

14.
Ba0.8Sr0.2TiO3/MgO(001) heterostructures are studied using atomic-force spectroscopy in several modes (the contact and semicontact modes and that of piezoelectric response) to obtain information on the relief and the distribution of the electric potential on the surface. Based on data obtained for films with different thicknesses, the correlation between the domain sizes and orientations and the film thickness and the surface relief is established. It is shown that the films with thicknesses less than 36 nm contain only aa domains whose dimensions decrease with increasing film thickness. The films with thicknesses greater than 36 nm contain only c domains whose dimensions increase with increasing film thickness.  相似文献   

15.
The instability of amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) with different active layer thicknesses under temperature stress has been investigated through using the density-of-states (DOS). Interestingly, the a-IGZO TFT with 22 nm active layer thickness showed a better stability than the others, which was observed from the decrease of interfacial and semiconductor bulk trap densities. The DOS was calculated based on the experimentally-obtained activation energy (EA), which can explain the experimental observations. We developed the high-performance Al2O3 TFT with 22 nm IGZO channel layer (a high mobility of 7.4 cm2/V, a small threshold voltage of 2.8 V, a high Ion/Ioff 1.8 × 107, and a small SS of 0.16 V/dec), which can be used as driving devices in the next-generation flat panel displays.  相似文献   

16.
Radiative transfer in the Ly α spectral line in a stationary, plane-parallel plasma of constant temperature and electron density is studied using model H-atoms with only two bound levels and a continuum. For this purpose, the equation of radiative transfer is solved simultaneously with the steady-state equations of the atomic levels and the kinetic equation of the electrons. The numerical results indicate that, in hydrogen plasmas with temperatures T ? 12,000°K and electron densities ne ? 1016cm?3, the high-energy tail of the electron velocity distribution deviates from a Maxwell distribution, even in cases of rather large optical thicknesses and that therefore the deviations from local thermodynamic equilibrium are increased compared with estimates based on the assumption of a Maxwellian electron velocity distribution. This qualitative conclusion should hold in spite of some deficiencies of the model which are discussed.  相似文献   

17.
18.
The magnetic and transport properties of anion- and cation-deficient Nd0.52Sr0.48MnO3 films with different thicknesses, as well as of two films from this system grown on different SrTiO3 and LaAlO3 substrates, are studied. Below Curie temperature T C, the films with different thicknesses exhibit phase separation: they represent magnetic clusters (drops) embedded in a nonconducting paramagnetic (at T > T N, where T N is the Néel temperature) or antiferromagnetic (T < T N) matrix. The temperature dependences of the resistivity of the films are well described in terms of the polaron mechanism of conduction. In external magnetic field H = 0.01 T, the drops may reach 15 nm in size. They consist of magnetic polarons with a small radius (1–2 nm). The drops are shown to interact with each other in the films. Because of competition between drop-drop dipole interaction and the magnetic energy, the drops disintegrate into droplets with a size comparable to that of a magnetic polaron in a field of 1 T. An explanation is given for the discrepancy between our results and the frequently observed growth of the drops with a rise in the external magnetic field. As the film gets thicker, the fraction of the ferromagnetic phase grows with thickness nonlinearly. In the film grown on SrTiO3 (compressed by 0.9%), the characteristic Néel and Curie temperatures are lower than in the film grown on LaAlO3. The diameters of ferromagnetic drops (both maximal at H = 0.01 T and minimal at H = 1 T) turn out to be roughly the same as in the films with different thicknesses.  相似文献   

19.
We have carried out extensive studies on the self-injection problem in barrierless heterojunctions between La0.7Ca0.3MnO3 (LCMO) and YBa2Cu3O7-δ (YBCO) thin films. The heterojunctions were formed in situ by sequentially growing LCMO and YBCO films on 〈100〉 LaAlO3 (LAO) substrate using a pulsed laser deposition (PLD) system. YBCO micro-bridges with 64 μm width were patterned both on the LAO (control) and LCMO side of the substrate. Critical current, I c, was measured at 77 K on both the control side as well as the LCMO side for different YBCO film thickness. It was observed that while the control side showed a J c of ∼ 2 × 106 A/cm2, the LCMO side showed about half the value for the same thickness (1800 ?). The difference in J c indicates that a certain thickness of YBCO has become ‘effectively’ normal due to self-injection. From the measurement of J c at two different thicknesses (1800 ? and 1500 ?) of YBCO films both on the LAO as well as the LCMO side, the value of self-injection length (at 77 K) was estimated to be ∼ 900 ?. To the authors’ best knowledge, this is the first time that self-injection length has been quantified. A control experiment carried out with LaNiO3 deposited by PLD on YBCO did not show any evidence of self-injection.  相似文献   

20.
The relation of isotopic distribution of the heavy ion peripheral reaction products in intermediate energy range to neutron-skin and excitation energy has been studied.The thickness of neutron-skin predicated by the droplet model and emperical one-body disspation in the intermediate energy range has been considered.The experimental isotopic distribution produced by 40Ar and 86Kr as projectiles in the intermediate energy can be reproduced by calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号