首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以Anderson型多金属氧酸盐(POM)为构筑单元,通过共价键的方式将两个胆固醇分子连接到POM两端,制备了一种具有胆固醇-多金属氧酸盐-胆固醇结构的杂化分子,其在本体中通过自组装形成有序的六棱柱状结构。杂化分子的POM核在N,N-二甲基甲酰胺中具有良好的溶解性,而其胆固醇端基在甲苯中具有适当的溶解性。在甲苯体积分数为85.7%的条件下,杂化分子通过POM核与其胆固醇端基溶解性的差异、胆固醇端基之间较强的范德华力和POM核之间较强的相互静电作用力,可以自组装形成不同尺度的有序纤维结构,其相互缠绕最终形成典型的三维网状结构。在纤维结构中,杂化分子通过胆固醇层与POM层相互交替排列,在透射电镜表征中形成了明暗交替的层状精细结构。本研究工作在纳米材料的设计、组装和应用方面具有潜在的应用价值。  相似文献   

2.
设计合成了系列单链L-苯丙氨酸衍生物,该系列衍生物单组分没有胶凝性能. 选择脂肪胺作为配对物,与L-苯丙氨酸衍生物组成双组分体系后能够胶凝许多有机溶剂形成凝胶. 流变学测试显示该凝胶体系弹性模量(G’)比粘性模量(G")约高一个数量级,有着很好的机械性能,并且呈现出典型的类固体的流变学行为. 傅里叶变换红外(FT-IR)光谱、核磁共振(NMR)谱、小角X射线衍射(SAXS)和扫描电镜(SEM)结果表明,凝胶中胶凝剂分子形成纤维状或片层状的聚集体,羧基(―COOH)和氨基(―NH2)的酸碱作用、酰胺基团间(―CONH―)的氢键作用以及分子间范德华作用力是形成该凝胶的主要驱动力. 凝胶中胶凝剂分子自组装形成具有周期性的层状有序结构,层状结构进一步组装形成纤维状聚集体,最终形成三维网状结构阻碍溶剂流动形成凝胶.  相似文献   

3.
A chiral gelator, RR- or SS-N,N'-diperfluorooctanoyl-1,2-diaminocyclohexane, gelated racemic 2-butanol. The gel was most stable at the racemic mixture, its stability lowered with the increase in the optical purity of the gelator. Notably, characteristic helically coiled fibrils were formed in the narrow region of enantiomer excess (ee = 0.2-0.4). Promotion effects of the antipodal enantiomers are proposed.  相似文献   

4.
The structures of the self-assembled monolayers of various 4-alkoxybenzoic acids physisorbed at the liquid-solid interface were established by employing scanning tunnelling microscopy (STM). This study has been essentially undertaken to explore the competitive influence of van der Waals and hydrogen-bonding interactions on the process of two-dimensional self-assembly. These acid derivatives form hydrogen-bonded dimers as expected; however, the dimers organise themselves in the form of relatively complex lamellae. The characteristic feature of these lamellae is the presence of regular discommensurations or kinks along the lamella propagation direction. The formation of kinked lamellae is discussed in light of the registry mechanism of the alkyl chains with the underlying graphite substrate. The location of the kinks along a lamella depends on the number (odd or even) of carbon atoms in the alkyl chain. This result indicates that concerted van der Waals interactions of the alkyl chain units introduce the odd/even chain-length effect on the surface-assembled supramolecular patterns. The odd/even effects are retained even upon complexation with a hydrogen-bond acceptor. However, as the solvent is changed from 1-phenyloctane to 1-octanoic acid, the kinked lamellae as well as the odd/even effects disappear. This solvent-induced convergence of supramolecular patterns is attained by means of co-crystallisation of octanoic acid molecules in the 2D crystal lattice, which is evident from high-resolution STM images. The solvent co-adsorption phenomenon is discussed in terms of competing van der Waals and hydrogen-bonding interactions.  相似文献   

5.
设计合成了系列单链L-苯丙氨酸衍生物,该系列衍生物单组分没有胶凝性能.选择脂肪胺作为配对物,与L-苯丙氨酸衍生物组成双组分体系后能够胶凝许多有机溶剂形成凝胶.流变学测试显示该凝胶体系弹性模量(G′)比粘性模量(G′′)约高一个数量级,有着很好的机械性能,并且呈现出典型的类固体的流变学行为.傅里叶变换红外(FT-IR)光谱、核磁共振(NMR)谱、小角X射线衍射(SAXS)和扫描电镜(SEM)结果表明,凝胶中胶凝剂分子形成纤维状或片层状的聚集体,羧基(―COOH)和氨基(―NH2)的酸碱作用、酰胺基团间(―CONH―)的氢键作用以及分子间范德华作用力是形成该凝胶的主要驱动力.凝胶中胶凝剂分子自组装形成具有周期性的层状有序结构,层状结构进一步组装形成纤维状聚集体,最终形成三维网状结构阻碍溶剂流动形成凝胶.  相似文献   

6.
Three novel hetero[3]rotaxanes, which comprise one neutral tetraamide cyclophane, one tetracationic cyclophane, and one linear component, have been assembled by utilizing hydrogen-bonding and donor-acceptor interactions, through three neutral [2]rotaxanes as intermediates. Three tetracationic [2]rotaxanes are also prepared for property comparison. For all three linear components, diamide subunits, the hydrogen-bonding templating moieties, are introduced at the center of the molecules, while the electron-rich hydrogquinone subunits, the donor-acceptor interaction templates, are incorporated between the diamides and the triphenylmethyl stoppers. Compared with the reported [3]rotaxanes, the novel hetero[3]rotaxanes exhibit remarkably intensified spatial interaction between the two ring components, which had been proved by (1)H NMR and UV study. For the first time, inter-ring NOEs are observed for interlocked [3]rotaxanes.  相似文献   

7.
A carbonaceous dumbbell was able to spontaneously glue two tubular receptors to form a unique two‐wheeled composite through van der Waals interactions, thus forcing the wheel components into contact with each other at the edges. In the present study, two tubular receptors with enantiomeric carbon networks were assembled on the dumbbell joint, and the handedness of the receptors was discriminated, thus leading to the self‐sorting of homomeric receptors from a mixture of enantiomeric tubes. The crystal structures of the composites revealed the structural origins of the molecular recognition driven by van der Waals forces as well as the presence of a columnar array of C120 molecules in a 1:1 composite.  相似文献   

8.
《Tetrahedron》2019,75(34):130458
The hydrolytic stability of norcantharidine derived conformationally constrained diamides in acidic media is solely governed by the type of amide. Tertiary diamides underwent smooth acid catalyzed hydrolysis due to anchimeric assistance whereas other diamides were stable. This was corroborated from conformational proximity of the amide groups for anchimeric assistance based on single crystal X-ray structure analysis. Theoretical calculations on the diamide structures also predict the similar proximity of the diamides in those conformations. Thus norcantharidine based diamides could probably serve as promising systems for delayed release of certain types of drugs which possess secondary amine component as exemplified by the release of m-chlorophenylpiperazine at a pH range of 1–2.  相似文献   

9.
A DNA‐based covalent versus a non‐covalent approach is demonstrated to control the optical, chirooptical and higher order structures of Nile red ( Nr ) aggregation. Dynamic light scattering and TEM studies revealed that in aqueous media Nr ‐modified 2′‐deoxyuridine aggregates through the co‐operative effect of various non‐covalent interactions including the hydrogen bonding ability of the nucleoside and sugar moieties and the π‐stacking tendency of the highly hydrophobic dye. This results in the formation of optically active nanovesicles. A left‐handed helically twisted H‐type packing of the dye is observed in the bilayer of the vesicle as evidenced from the optical and chirooptical studies. On the other hand, a left‐handed helically twisted J‐type packing in vesicles was obtained from a non‐polar solvent (toluene). Even though the primary stacking interaction of the dye aggregates transformed from H→J while going from aqueous to non‐polar media, the induced supramolecular chirality of the aggregates remained the same (left‐handed). Circular dichroism studies of DNA that contained several synthetically incorporated and covalently attached Nr ‐modified nucleosides revealed the formation of helically stacked H‐aggregates of Nr but—in comparison to the noncovalent aggregates—an inversed chirality (right‐handed). This self‐assembly propensity difference can, in principle, be applied to other hydrophobic dyes and chromophores and thus open a DNA‐based approach to modulate the primary stacking interactions and supramolecular chirality of dye aggregates.  相似文献   

10.
《Liquid crystals》2001,28(12):1805-1812
The crystal structure of the title compound, which has an optically isotropic IsoX phase with an endothermic transition on cooling from an Sm*C phase, has been determined at 230 K. The crystal has a smectic-like layer structure composed of four crystallographically independent molecules. In the layer, one-dimensional chains of tightly fitted pyrimidine rings, with N ... H distances shorter than the van der Waals radii, result in the large overlapping of core moieties and further induce close contacts and stereo-specific F-methyl interactions between the chiral groups; this is considered to be responsible for the uniquely organized IsoX phase.  相似文献   

11.
The use of crystal engineering to control the supramolecular arrangement of π-conjugated molecules in the solid-state is of considerable interest for the development of novel organic electronic materials. In this study, we investigated the effect of combining of two types of supramolecular interaction with different geometric requirements, amide hydrogen bonding and π-interactions, on the π-overlap between calamitic π-conjugated cores. To this end, we prepared two series of bithiophene diesters and diamides with methylene, ethylene, or propylene spacers between the bithiophene core and the functional groups in their terminal substituents. The hydrogen-bonded bithiophene diamides showed significantly denser packing of the bithiophene cores than the diesters and other known α,ω-disubstituted bithiophenes. The bithiophene packing density reach a maximum in the bithiophene diamide with an ethylene spacer, which had the smallest longitudinal bithiophene displacement and infinite 1D arrays of electronically conjugated, parallel, and almost linear N−H⋅⋅⋅O=C hydrogen bonds. The synergistic hydrogen bonding and π-interactions were attributed to the favorable conformation mechanics of the ethylene spacer and resulted in H-type spectroscopic aggregates in solid-state absorption spectroscopy. These results demonstrate that the optoelectronic properties of π-conjugated materials in the solid-state may be tailored systematically by side-chain engineering, and hence that this approach has significant potential for the design of organic and polymer semiconductors.  相似文献   

12.
A unique cholesterol-based A(LS)2-type gelator, which is a hydrogen-bonding complex based on an ALS-type non-gelator molecule 3-cholesteryl 4-(trans-2-(4-pyridinyl)vinyl)phenyl succinate and a counterpart 3-cholesteryloxycarbonylpropanoic acid, shows strong gelation ability in alcohol and aromatic solvents. The formed gel has a high Tg at low gelation concentration, and its xerogel shows fibrillar microstructure revealed by scanning electron microscopy (SEM). FTIR confirms the existence of intermolecular hydrogen bond in the gelator, and X-ray diffraction (XRD) analysis reveals that the gelator possesses a folded conformation in gel and self-assembles into the fibrillar structure mainly by van der Waals interaction between cholesteryl moieties of the gelator. Further more, the thermotropic behavior of the xerogel is studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), which shows typical optical textures of liquid crystals.  相似文献   

13.
Glutamine derivative 1 with two‐photon absorbing units has been synthesized and was found to show gelation ability in some solvents. Its self‐assembly in the gel phase could be controlled by the solvent and speed of gelation. For example, in DMSO the organogelator self‐assembled into H‐aggregates with weak exciton coupling between the aromatic moieties. On the other hand, in DMSO/diphenyl ether (1:9, v/v) the molecules formed 1D aggregates, but with strong exciton coupling due to the small distance between the chromophores. Moreover, the formation of these two kinds of aggregates could be adjusted by the ratio of DMSO to diphenyl ether. In DMSO/toluene, DMSO/butanol, DMSO/butyl acetate, and DMSO/acetic acid systems similar results were observed. Therefore, conversion of the packing model occurs irrespective of the nature of the solvent. Notably, a unique sign inversion in the CD spectra could be realized by controlling the speed of gelation in the DMSO/diphenyl ether (1:9, v/v) system. It was found that a low speed of gelation induces the gelator to adopt a packing model with strong π–π interactions between the aromatic units. Moreover, the gels, when excited at 800 nm, emit strong green fluorescence and the quantum chemical calculations suggest that intramolecular charge transfer leads to two‐photon absorption of the gelator molecule.  相似文献   

14.
合成并表征了一种含7-硝基苯并-2-氧杂-1,3-二唑基(7-Nitrobenzo-2-oxa-1,3-diazol-4-yl)的胆固醇衍生物(NBD-C), 考察了其在30种溶剂中的胶凝行为. 实验结果表明, NBD-C对乙腈具有很强的胶凝作用, 且该凝胶体系具有显著的剪切触变性. 对干凝胶的显微分析发现, 在不同溶剂中, NBD-C具有不同的聚集结构. 红外光谱(FTIR)、核磁共振光谱(1H NMR)和荧光光谱研究结果表明, 除了胆固醇的范德华堆积作用之外, 分子间氢键作用也是该化合物聚集的重要驱动力.  相似文献   

15.
The proton affinity (PA) of cyclopentane carboxamide 1, cyclohexane carboxamide 2 and their secondary and tertiary amide derivatives S1, S2, T1 and T2, was determined by the thermokinetic method and the kinetic method [PA(1) = 888 +/- 5 kJ mol(1); PA(2) = 892 +/- 5 kJ mol(1); PA(S1) = 920 +/- 6 kJ mol(1); PA(S2) = 920 +/- 6 kJ mol(1); PA(T1) = 938 +/- 6 kJ mol(1); PA(T2) = 938 +/- 6 kJ mol(1)]. Special entropy effects are not observed. Additionally, the effects of protonation have been studied using an advanced kinetic method for all isomers 37 of cyclopentane dicarboxamides and cyclohexane dicarboxamides (with the exception of cis-cyclopentane-1,2-dicarboxamide) and their bis-tertiary derivatives T3T7 by estimating the PA and the apparent entropy of protonation Delta(DeltaS(app)). Finally, the study was extended to bicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxamide 8 and its bis-tertiary derivative T8, to all stereoisomers of bicyclo[2.2.1]heptane-2,3-dicarboxamide 9, their secondary and tertiary amide derivatives S9 and T9, and to endoendobicyclo[2.2.1]heptane-2,5-dicarboxamide 10 and the corresponding secondary and tertiary derivatives S10 and T10. Compared with 1 and 2, all alicyclic diamides exhibit a significant increase of the PA (DeltaPA) and special entropy effects on protonation. For alicyclic diamides, which can not accommodate a conformation appropriate for building a proton bridge, the values of DeltaPA and Delta(DeltaS(app)) are small to moderate. This is explained by ion / dipole interactions between the protonated and neutral amide group which stabilize the protonated species but hinder the free rotation of the amide groups. If any of the conformations of the alicyclic diamide allows formation of a proton bridge, DeltaPA and Delta(DeltaS(app)) increase considerably. A spectacular case is cis-cyclohexane-1,4-dicarboxamide 7c which is the most basic monocyclic diamide, although generation of the proton bridge requires the unfavorable boat conformation with both amide substituents at a flagpole position. A pre-orientation of the two amide groups in such a 1,4-position in 10 results in a particularly large PA of < 1000 kJ mol(1). The observation of comparable values for Delta(DeltaS(app)) for linear and monocyclic diamides indicates that a major part of the entropy effects originates from freezing the free rotation of the amide groups by formation of the proton bridge. This is corroborated by observing corresponding effects during the protonation of dicarboxamides containing the rigid bicyclo[2.2.1]heptane carbon skeleton, where the only internal movements of the molecules corresponds to rotation of the amide substituents.  相似文献   

16.
The synthesis and characterisation of a series of chiral and achiral low molecular weight organogelators (LMWGs) based on bis-amide substituted dithienylethene photochromic switches is reported. The LMWGs gelate a range of solvents depending on the specific functionalisation of the hydrogen bonding amide groups. In mixtures of chiral and achiral LMWGs the stereochemical outcome of the chiral aggregation is determined by the chiral LMWG molecules in most cases. However, for the first time we demonstrate that the stereochemical outcome of the aggregation can be influenced by the achiral LWMG molecules in some cases. Furthermore specific π-π (and/or van der Waals) interactions of chiral LMWGs 1-3o with the solvent allow the solvent to influence the control of chirality of aggregation. This influence of the solvent has a dramatic effect on whether four- or two-gel states are available.  相似文献   

17.
Crafting of chiral plasmonic nanostructures is extremely important and challenging. DNA‐directed organization of nanoparticle on a chiral template is the most appealing strategy for this purpose. Herein, we report a supramolecular approach for the design of DNA‐decorated, helically twisted nanoribbons through the amphiphilicity‐driven self‐assembly of a new class of amphiphiles derived from DNA and hexaphenylbenzene (HPB). The ribbons are self‐assembled in a lamellar fashion through the hydrophobic interactions of HPB. The transfer of molecular chirality of ssDNA into the HPB core results in the bias of one of the chiral propeller conformations for HPB and induces a helical twist into the lamellar packing, and leads to the formation of DNA‐wrapped nanoribbons with M‐helicity. The potential of the ribbon to act as a reversible template for the 1D chiral organization of plasmonic nanomaterials through DNA hybridization is demonstrated.  相似文献   

18.
Crafting of chiral plasmonic nanostructures is extremely important and challenging. DNA‐directed organization of nanoparticle on a chiral template is the most appealing strategy for this purpose. Herein, we report a supramolecular approach for the design of DNA‐decorated, helically twisted nanoribbons through the amphiphilicity‐driven self‐assembly of a new class of amphiphiles derived from DNA and hexaphenylbenzene (HPB). The ribbons are self‐assembled in a lamellar fashion through the hydrophobic interactions of HPB. The transfer of molecular chirality of ssDNA into the HPB core results in the bias of one of the chiral propeller conformations for HPB and induces a helical twist into the lamellar packing, and leads to the formation of DNA‐wrapped nanoribbons with M‐helicity. The potential of the ribbon to act as a reversible template for the 1D chiral organization of plasmonic nanomaterials through DNA hybridization is demonstrated.  相似文献   

19.
In 2‐ethoxybenzamide, C9H11NO2, the amide substituents are linked into centrosymmetric head‐to‐head hydrogen‐bonded dimers. Additional hydrogen bonds between adjacent dimers give rise to ribbon‐like packing motifs, which extend along the c axis and possess a third dimension caused by twisting of the 2‐ethoxyphenyl substituent with respect to the hydrogen‐bonded amide groups. The ribbons are arranged in a T‐shaped herringbone pattern and cohesion between them is achieved by van der Waals forces.  相似文献   

20.
The title compound, C25H44N4O5, exhibits a turn with the main chain reversing direction, held together by an intramol­ecular N—H?O hydrogen bond. In the urea fragment, a notable amide C—N bond between the carboxyl C and the tertiary N atom shows marked single‐bond character [1.437 (2) Å]. The dihedral angle of the β‐alanyl residue, centrally located in the turn, is gauche [69.2 (2)°]. The packing is mediated by two intermolecular hydrogen bonds and van der Waals contacts involving the methyl moieties and the cyclo­hexyl rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号