首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sasaki Y  Avetisyan Y  Yokoyama H  Ito H 《Optics letters》2005,30(21):2927-2929
We report on the demonstration of surface-emitted terahertz- (THz-) wave difference-frequency generation from two-dimensional (2D) periodically poled lithium niobate (PPLN). The two orthogonal periodic structures individually compensate for both the phase mismatch of the launched lasers and the generated THz wave. Tunable 1.5-1.8 THz wave generation with a bandwidth of 10-GHz was obtained by use of two 2D PPLN crystals. We also confirmed that THz waves were simultaneously generated into two opposite directions, which suggests the possibility of higher THz-wave output power.  相似文献   

2.
Reliable generation of single photons is of key importance for fundamental physical experiments and quantum protocols.The periodically poled lithium niobate [LN) waveguide has shown promise for an integrated quantum source due to its large spectral tunability and high efficiency, benefiting from the quasi-phase-matching. Here we demonstrate photon-pair sources based on an LN waveguide periodically poled by a tightly focused femtosecond laser beam. The pair coincidence rate reaches ~8000 counts p...  相似文献   

3.
We constructed diffusion-bonded stacks of periodically poled lithium niobate (PPLN). Such crystals combine the advantages of planar processing used to make PPLN wafers with the power-handling capability of large apertures. We demonstrated an optical parametric oscillator that uses a 3-mm-thick diffusion-bonded stack consisting of three 1-mm-thick PPLN crystals.  相似文献   

4.
Cao Z  Han L  Liang W  Deng L  Wang H  Xu C  Zhang W  Gong Z  Gao X 《Optics letters》2007,32(13):1953-1955
We report, for what is the first time to our knowledge, widely tunable mid-IR light generation over a range of greater than 1000 nm in the 4 microm region by employing a single quasi-phase-matched periodically poled niobate waveguide at room temperature. The waveguide we used was fabricated by annealed proton exchange based on periodically poled lithium niobate. A peak conversion efficiency of 10%/W and a linewidth as small as 37 MHz were achieved. The developed mid-IR light generator may find wide applications in trace gas detection of multiple atmospheric species and high-resolution spectroscopy.  相似文献   

5.
We present a full-wafer fabrication process for periodically poled lithium niobate with a 6.5-mum domain period. Samples that were 53 mm long and 0.5 mm thick were obtained with this process for single-pass cw 1064-nm Nd:YAG second-harmonic generation. These samples exhibited 78% of the ideal nonlinear coefficient, had a measured conversion efficiency of 8.5% /W in the low-power limit, and produced 2.7 W of cw 532-nm output with 6.5 W of cw input, which corresponds to 42% power conversion efficiency.  相似文献   

6.
It was shown that the periodically poled LiNbO3-waveguide with period of poling λ≈λ/ng (λ is the wavelength of emitted THz-wave, ng is a refractive index corresponding to optical group velocity) emits THz-wave difference-frequency generation (DFG) in the direction normal to the surface of the planar waveguide. The 5% distinction between the manufactured and required periods of gratings results only in a small deflection (∼6°) of the output THz-beam from the normal direction. The dependence of DFG efficiency on mode size is analyzed. The output THz power at λ=150 μm is estimated as 2 mW, taking into account imperfections in coupling incident beams with guided modes. It was shown that the efficiency of THz-wave DFG in surface-emitting geometry is more than for collinear geometry in bulk crystal, especially in the high-absorption wavelength region. Received: 16 May 2001 / Revised version: 13 August 2001 / Published online: 2 November 2001  相似文献   

7.
We report a new method of tuning the second-harmonic signal generated in a periodically poled lithium niobate (PPLN) waveguide. This technique relies on the recent progress in the fabrication of PPLNs on x-cut substrates along with periodical coplanar electrodes to reduce the tuning voltage while preserving the conversion efficiency. Our scheme exploits a type I interaction implemented in a titanium waveguide to impede cancellation of the electro-optical coefficients and to minimize the group-velocity mismatch between the first- and second-harmonic modes. The tuning range covers 58 nm with an applied voltage of +/-150 V.  相似文献   

8.
Tunable coherent emission is generated in a single-pass,cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN).Three ranges of wavelength,including visible output from 628 nm to 639 nm,near-infrared output from 797 nm to 816 nm,and mid-infrared output from 3167 nm to 3459 nm,were obtained from the monolithic PPLN,which consists of a 10-mm section for 532-nm-pumped optical parametric generation(OPG)and a 7-mm section for 1064-nm-pumped sum frequency generation(SFG).A pump-to-signal conversion efficiency of 23.4%for OPG at 50°C and a quantum efficiency of 26.2%for SFG at 200°C were obtained.  相似文献   

9.
Hartwig U  Kösters M  Woike T  Buse K 《Optics letters》2006,31(22):3267-3269
Holographic index gratings based on a zero-electric-field photorefractive effect are recorded at high temperatures in copper-doped periodically poled lithium niobate crystals. The interplay between the domain structure and the index grating is studied: the fundamental grating with spatial frequency K is strongly suppressed. Pronounced sideband gratings with K(s)=K+sG appear, where G is the domain grating vector and s is an integer number. After development, an additional grating based on the electro-optic effect shows up. In contrast with the previously mentioned gratings, this grating allows anisotropic diffraction.  相似文献   

10.
Nonlinear wave propagation was investigated experimentally in coupled waveguides by means of the cascaded nonlinearity in quasi-phase-matched second-harmonic generation. With a specially designed wave-vector-mismatch distribution along the propagation axis, cascading was optimized for low fundamental depletion. High-contrast, ultrafast all-optical switching with switching powers of tens of watts was observed.  相似文献   

11.
We describe an optical parametric oscillator based on aperiodically poled lithium niobate that generates nearly transform-limited 53-fs duration pulses at a center wavelength of 3mum, corresponding to only 5 optical cycles. Results are presented illustrating the effect of pump- and grating-period chirp on the idler pulses, and a configuration capable of producing idler bandwidths in excess of 700 nm is discussed.  相似文献   

12.
The compatibility of low concentration (α-phase) proton exchange channel waveguides with electric field surface periodic poling of congruent lithium niobate (SPPLN) crystals has been experimentally demonstrated. With such waveguides, we obtained ultraviolet second harmonic generation (SHG) by first order quasi-phase-matching (QPM), a result made possible by the fabrication, on Z-cut LN crystals, of periodic structures with a pitch down to 750 nm. Nonlinear copropagating QPM-SHG measurements have been carried out on such structures. The pump source was a Ti:sapphire laser with a tunability range of 700–980 nm and a 40 GHz linewidth. We have measured UV continuous wave light at 390 nm by means of a lock-in amplifier and a photodiode with an enhanced response in the UV. The measured conversion efficiency was about 1% W?1 cm?2.  相似文献   

13.
In this article, we present studies on therahertz (THz) wave generation and frequency up-conversion in a periodically poled lithium niobate (PPLN) crystal. A frequency at 1.37 THz was generated as femtosecond pump pulses passed through a PPLN crystal with grating periods of 30 μm. The pump-induced THz wave interacts with the probe wave in the crystal by frequency mixing. The frequency up-converted THz wave is easily detected by a normal photodiode. A new scheme for generation and detection of THz wave in one non-linear crystal was proposed.  相似文献   

14.
Collinear broadband optical parametric generation (OPG) using periodically poled lithium niobate (PPLN) crystals were designed and experimentally demonstrated with the quasi-phase matching (QPM) periods of 21.5, 24.0, and 27.0 μm. The broad gain bandwidth was accomplished by choosing a specific set of the period and the pump wavelength that allows the group velocities of the signal and the idler to match close to the degeneracy point. OPG gain bandwidth and also the spectral region could be controlled by proper design of QPM period and pump wavelength. The total OPG gain bandwidth of 600, 900, and 1200 nm was observed for the PPLN devices with QPM periods of 21.5, 24.0, and 27.0 μm, respectively. We have also observed multiple color visible generation whenever the OPG spectrum was significantly broad. From the visible peaks of the three PPLN samples, it is found that broad gain bandwidth is crucial in the temperature-insensitive collinear simultaneous RGB generation from a single crystal.  相似文献   

15.
Self-optical parametric oscillation is demonstrated for the first time to our knowledge in a periodically poled neodymium-doped lithium niobate (Nd:PPLN) crystal. The crystal is pumped by a cw Ti:sapphire laser at 813.5 nm. The Nd(3+) ions absorb the 813.5-nm radiation to generate 1084-nm laser oscillation. The internally Q switched 1084-nm radiation pumps the periodically poled lithium niobate host matrix to generate optical parametric oscillation at 1.55 and 3.6 microm . Up to 24% conversion efficiency from laser to signal is observed.  相似文献   

16.
Chen X  Shi J  Chen Y  Zhu Y  Xia Y  Chen Y 《Optics letters》2003,28(21):2115-2117
We demonstrate an electro-optic Solc-type wavelength filter in periodically poled lithium niobate (PPLN). A Solc-type transmission spectrum is observed experimentally in PPLN with four periods from 20.2 to 20.8 microm. Modulation of the transmission power of the filter is realized by application of electric fields along the Y axis of the PPLN. It is observed that the wavelength can also be tuned by temperature.  相似文献   

17.
Chiang AC  Lin YY  Wang TD  Huang YC  Shy JT 《Optics letters》2002,27(20):1815-1817
We report a demonstration of distributed-feedback (DFB) optical parametric oscillation (OPO) by writing photorefractive gratings in periodically poled lithium niobate (PPLN). The photorefractive DFB structures were fabricated by illumination of PPLN with UV light through a photomask and by writing of PPLN with UV-light gated interfering laser beams at 532 nm. Evidence of OPO was observed from the spectral narrowing at the 1438.8- and the 619.3-nm signal wavelengths from 1064- and 532-nm-pumped PPLN crystals with the DFB grating periods phase matched to the 4084.5- and 3774-nm idler wavelengths, respectively.  相似文献   

18.
Surface-emitted terahertz- (THz-) wave generation by difference-frequency mixing with ridge-shaped periodically poled lithium niobate (PPLN) was demonstrated. The PPLN had a ridge height of 300 microm, a thickness of 20 microm, and an interaction length of 35 mm. The ridge behaves as a slab waveguide for optical pump beams. The PPLN gives rise to THz waves in opposite directions, perpendicular to the pump-beam direction. Reflecting the THz wave on one side and overlapping it with the THz wave on the other side increased the total THz-wave intensity approximately 2.7 times compared with that without reflection and mixing.  相似文献   

19.
The first known demonstration of tunable terahertz-wave generation by difference-frequency generation of dual signal-wave quasi-phase-matched optical parametric oscillation was performed with periodically poled LiNbO(3) (PPLN) with a series of gratings. An organic ionic salt, 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST), was used as a nonlinear crystal. A compact terahertz-wave source resulted, and changing the temperature of the PPLN permitted the wavelength to be varied from 120 to 160 mum. The wavelength could be tuned from 100 to 700 mum by proper selection of combinations of periodically poled gratings.  相似文献   

20.
沈世奎  杨爱英  左林  崔建民  孙雨南 《中国物理 B》2011,20(10):104206-104206
The temperature dependency of a 5-mol% MgO-doped periodically poled lithium niobate waveguide was investigated in this paper. We started with the temperature-dependent refractive index equation for the waveguide. Secondly, the temperature dependency of the second harmonic generation effect was experimentally researched under different temperatures and pump powers. The quasi-phase matched wavelengths, efficiency bandwidths and peak efficiencies of the waveguide were measured. The experimental results agreed with theoretical simulations, which are indispensable in the following all-optical sampling studies based on the cascaded second harmonic generation/difference-frequency generation process in the current device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号