首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Mixed-integer rounding (MIR) is a simple, yet powerful procedure for generating valid inequalities for mixed-integer programs. When used as cutting planes, MIR inequalities are very effective for mixed-integer programming problems with unbounded integer variables. For problems with bounded integer variables, however, cutting planes based on lifting techniques appear to be more effective. This is not surprising as lifting techniques make explicit use of the bounds on variables, whereas the MIR procedure does not. In this paper we describe a simple procedure, which we call mingling, for incorporating variable bound information into MIR. By explicitly using the variable bounds, the mingling procedure leads to strong inequalities for mixed-integer sets with bounded variables. We show that facets of mixed-integer knapsack sets derived earlier by superadditive lifting techniques can be obtained by the mingling procedure. In particular, the mingling inequalities developed in this paper subsume the continuous cover and reverse continuous cover inequalities of Marchand and Wolsey (Math Program 85:15–33, 1999) as well as the continuous integer knapsack cover and pack inequalities of Atamtürk (Math Program 98:145–175, 2003; Ann Oper Res 139:21–38, 2005). In addition, mingling inequalities give a generalization of the two-step MIR inequalities of Dash and Günlük (Math Program 105:29–53, 2006) under some conditions.  相似文献   

2.
We present a generalization of the mixed integer rounding (MIR) approach for generating valid inequalities for (mixed) integer programming (MIP) problems. For any positive integer n, we develop n facets for a certain (n + 1)-dimensional single-constraint polyhedron in a sequential manner. We then show that for any n, the last of these facets (which we call the n-step MIR facet) can be used to generate a family of valid inequalities for the feasible set of a general (mixed) IP constraint, which we refer to as the n-step MIR inequalities. The Gomory Mixed Integer Cut and the 2-step MIR inequality of Dash and günlük  (Math Program 105(1):29–53, 2006) are the first two families corresponding to n = 1,2, respectively. The n-step MIR inequalities are easily produced using periodic functions which we refer to as the n-step MIR functions. None of these functions dominates the other on its whole period. Finally, we prove that the n-step MIR inequalities generate two-slope facets for the infinite group polyhedra, and hence are potentially strong.   相似文献   

3.
One-dimensional infinite group problems have been extensively studied and have yielded strong cutting planes for mixed integer programs. Although numerical and theoretical studies suggest that group cuts can be significantly improved by considering higher-dimensional groups, there are no known facets for infinite group problems whose dimension is larger than two. In this paper, we introduce an operation that we call sequential-merge. We prove that the sequential-merge operator creates a very large family of facet-defining inequalities for high-dimensional infinite group problems using facet-defining inequalities of lower-dimensional group problems. Further, they exhibit two properties that reflect the benefits of using facets of high-dimensional group problems: they have continuous variables’ coefficients that are not dominated by those of the constituent low-dimensional cuts and they can produce cutting planes that do not belong to the first split closure of MIPs. Further, we introduce a general scheme for generating valid inequalities for lower-dimensional group problems using valid inequalities of higher-dimensional group problems. We present conditions under which this construction generates facet-defining inequalities when applied to sequential-merge inequalities. We show that this procedure yields some two-step MIR inequalities of Dash and Günlük.  相似文献   

4.
The n-step mixed integer rounding (MIR) inequalities of Kianfar and Fathi (Math Program 120(2):313–346, 2009) are valid inequalities for the mixed-integer knapsack set that are derived by using periodic n-step MIR functions and define facets for group problems. The mingling and 2-step mingling inequalities of Atamtürk and Günlük (Math Program 123(2):315–338, 2010) are also derived based on MIR and they incorporate upper bounds on the integer variables. It has been shown that these inequalities are facet-defining for the mixed integer knapsack set under certain conditions and generalize several well-known valid inequalities. In this paper, we introduce new classes of valid inequalities for the mixed-integer knapsack set with bounded integer variables, which we call n-step mingling inequalities (for positive integer n). These inequalities incorporate upper bounds on integer variables into n-step MIR and, therefore, unify the concepts of n-step MIR and mingling in a single class of inequalities. Furthermore, we show that for each n, the n-step mingling inequality defines a facet for the mixed integer knapsack set under certain conditions. For n?=?2, we extend the results of Atamtürk and Günlük on facet-defining properties of 2-step mingling inequalities. For n ≥ 3, we present new facets for the mixed integer knapsack set. As a special case we also derive conditions under which the n-step MIR inequalities define facets for the mixed integer knapsack set. In addition, we show that n-step mingling can be used to generate new valid inequalities and facets based on covers and packs defined for mixed integer knapsack sets.  相似文献   

5.
This is the second part of a survey on the infinite group problem, an infinite-dimensional relaxation of integer linear optimization problems introduced by Ralph Gomory and Ellis Johnson in their groundbreaking papers titled Some continuous functions related to corner polyhedra I, II (Math Program 3:23–85, 1972a; Math Program 3:359–389, 1972b). The survey presents the infinite group problem in the modern context of cut generating functions. It focuses on the recent developments, such as algorithms for testing extremality and breakthroughs for the k-row problem for general \(k\ge 1\) that extend previous work on the single-row and two-row problems. The survey also includes some previously unpublished results; among other things, it unveils piecewise linear extreme functions with more than four different slopes. An interactive companion program, implemented in the open-source computer algebra package Sage, provides an updated compendium of known extreme functions.  相似文献   

6.
In this paper, we present an approximate lifting scheme to derive valid inequalities for general mixed integer programs and for the group problem. This scheme uses superadditive functions as the building block of integer and continuous lifting procedures. It yields a simple derivation of new and known families of cuts that correspond to extreme inequalities for group problems. This new approximate lifting approach is constructive and potentially efficient in computation. J.-P. P. Richard was supported by NSF grant DMI-348611.  相似文献   

7.
 We consider stochastic programming problems with probabilistic constraints involving random variables with discrete distributions. They can be reformulated as large scale mixed integer programming problems with knapsack constraints. Using specific properties of stochastic programming problems and bounds on the probability of the union of events we develop new valid inequalities for these mixed integer programming problems. We also develop methods for lifting these inequalities. These procedures are used in a general iterative algorithm for solving probabilistically constrained problems. The results are illustrated with a numerical example. Received: October 8, 2000 / Accepted: August 13, 2002 Published online: September 27, 2002 Key words. stochastic programming – integer programming – valid inequalities  相似文献   

8.
In this paper, we introduce an iterative method for finding a common element of the set of solutions of equilibrium problems, of the set of variational inequalities and of the set of common fixed points of an infinite family of nonexpansive mappings in the framework of real Hilbert spaces. Strong convergence of the proposed iterative algorithm is obtained. As an application, we utilize the main results which improve the corresponding results announced in Chang et al. (Nonlinear Anal, 70:3307–3319, 2009), Colao et al. (J Math Anal Appl, 344:340–352, 2008), Plubtieng and Punpaeng (Appl Math Comput, 197:548–558, 2008) to study the optimization problem.  相似文献   

9.
In this survey we attempt to give a unified presentation of a variety of results on the lifting of valid inequalities, as well as a standard procedure combining mixed integer rounding with lifting for the development of strong valid inequalities for knapsack and single node flow sets. Our hope is that the latter can be used in practice to generate cutting planes for mixed integer programs. The survey contains essentially two parts. In the first we present lifting in a very general way, emphasizing superadditive lifting which allows one to lift simultaneously different sets of variables. In the second, our procedure for generating strong valid inequalities consists of reduction to a knapsack set with a single continuous variable, construction of a mixed integer rounding inequality, and superadditive lifting. It is applied to several generalizations of the 0–1 single node flow set. This paper appeared in 4OR, 1, 173–208 (2003). The first author is supported by the FNRS as a chercheur qualifié. This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific responsibility is assumed by the authors.  相似文献   

10.
 We present and study a mixed integer programming model that arises as a substructure in many industrial applications. This model generalizes a number of structured MIP models previously studied, and it provides a relaxation of various capacitated production planning problems and other fixed charge network flow problems. We analyze the polyhedral structure of the convex hull of this model, as well as of a strengthened LP relaxation. Among other results, we present valid inequalities that induce facets of the convex hull under certain conditions. We also discuss how to strengthen these inequalities by using known results for lifting valid inequalities for 0–1 continuous knapsack problems. Received: 30 October 2000 / Accepted: 25 March 2002 Published online: September 27, 2002 Key words. mixed integer programming – production planning – polyhedral combinatorics – capacitated lot–sizing – fixed charge network flow Some of the results of this paper have appeared in condensed form in ``Facets, algorithms, and polyhedral characterizations of a multi-item production planning model with setup times', Proceedings of the Eighth Annual IPCO conference, pp. 318-332, by the same authors. This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the authors. This research was also supported by NSF Grant No. DMI-9700285 and by Philips Electronics North America.  相似文献   

11.
The problems of (bi-)proportional rounding of a nonnegative vector or matrix, resp., are written as particular separable convex integer minimization problems. Allowing any convex (separable) objective function we use the notions of vector and matrix apportionment problems. As a broader class of problems we consider separable convex integer minimization under linear equality restrictions Ax = b with any totally unimodular coefficient matrix A. By the total unimodularity Fenchel duality applies, despite the integer restrictions of the variables. The biproportional algorithm of Balinski and Demange (Math Program 45:193–210, 1989) is generalized and derives from the dual optimization problem. Also, a primal augmentation algorithm is stated. Finally, for the smaller class of matrix apportionment problems we discuss the alternating scaling algorithm, which is a discrete variant of the well-known Iterative Proportional Fitting procedure.  相似文献   

12.
Theory for the convergence order of the convex relaxations by McCormick (Math Program 10(1):147–175, 1976) for factorable functions is developed. Convergence rules are established for the addition, multiplication and composition operations. The convergence order is considered both in terms of pointwise convergence and of convergence in the Hausdorff metric. The convergence order of the composite function depends on the convergence order of the relaxations of the factors. No improvement in the order of convergence compared to that of the underlying bound calculation, e.g., via interval extensions, can be guaranteed unless the relaxations of the factors have pointwise convergence of high order. The McCormick relaxations are compared with the αBB relaxations by Floudas and coworkers (J Chem Phys, 1992, J Glob Optim, 1995, 1996), which guarantee quadratic convergence. Illustrative and numerical examples are given.  相似文献   

13.
This is a survey on the infinite group problem, an infinite-dimensional relaxation of integer linear optimization problems introduced by Ralph Gomory and Ellis Johnson in their groundbreaking papers titled Some continuous functions related to corner polyhedra I, II (Math Program 3:23–85, 359–389, 1972ab). The survey presents the infinite group problem in the modern context of cut generating functions. It focuses on the recent developments, such as algorithms for testing extremality and breakthroughs for the k-row problem for general \(k\ge 1\) that extend previous work on the single-row and two-row problems. The survey also includes some previously unpublished results; among other things, it unveils piecewise linear extreme functions with more than four different slopes. An interactive companion program, implemented in the open-source computer algebra package Sage, provides an updated compendium of known extreme functions.  相似文献   

14.
We discuss two families of valid inequalities for linear mixed integer programming problems with cone constraints of arbitrary order, which arise in the context of stochastic optimization with downside risk measures. In particular, we extend the results of Atamtürk and Narayanan (Math. Program., 122:1–20, 2010, Math. Program., 126:351–363, 2011), who developed mixed integer rounding cuts and lifted cuts for mixed integer programming problems with second-order cone constraints. Numerical experiments conducted on randomly generated problems and portfolio optimization problems with historical data demonstrate the effectiveness of the proposed methods.  相似文献   

15.
16.
 We examine progress over the last fifteen years in finding strong valid inequalities and tight extended formulations for simple mixed integer sets lying both on the ``easy' and ``hard' sides of the complexity frontier. Most progress has been made in studying sets arising from knapsack and single node flow sets, and a variety of sets motivated by different lot-sizing models. We conclude by citing briefly some of the more intriguing new avenues of research. Received: January 15, 2003 / Accepted: April 10, 2003 Published online: May 28, 2003 Key words. mixed integer programming – strong valid inequalities – convex hull – extended formulations – single node flow sets – lot-sizing This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the authors. Research carried out with financial support of the project TMR-DONET nr. ERB FMRX–CT98–0202 of the European Union.  相似文献   

17.
 We study a special case of a structured mixed integer programming model that arises in production planning. For the most general case of the model, called PI, we have earlier identified families of facet–defining valid inequalities: (l, S) inequalities (introduced for the uncapacitated lot–sizing problem by Barany, Van Roy, and Wolsey), cover inequalities, and reverse cover inequalities. PI is 𝒩𝒫–hard; in this paper we focus on a special case, called PIC. We describe a polynomial algorithm for PIC, and we use this algorithm to derive an extended formulation of polynomial size for PIC. Projecting from this extended formulation onto the original space of variables, we show that (l, S) inequalities, cover inequalities, and reverse cover inequalities suffice to solve the special case PIC by linear programming. We also describe fast combinatorial separation algorithms for cover and reverse cover inequalities for PIC. Finally, we discuss the relationship between our results for PIC and a model studied previously by Goemans. Received: December 13, 2000 / Accepted: December 13, 2001 Published online: October 9, 2002 RID="★" ID="★" Some of the results in this paper have appeared in condensed form in Miller et al. (2001). Key words. mixed integer programming – polyhedral combinatorics – production planning – capacitated lot–sizing – fixed charge network flow – setup times This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the authors. This research was also supported by NSF Grant No. DMI-9700285 and by Philips Electronics North America.  相似文献   

18.
Mixed-integer rounding (MIR) inequalities play a central role in the development of strong cutting planes for mixed-integer programs. In this paper, we investigate how known MIR inequalities can be combined in order to generate new strong valid inequalities.?Given a mixed-integer region S and a collection of valid “base” mixed-integer inequalities, we develop a procedure for generating new valid inequalities for S. The starting point of our procedure is to consider the MIR inequalities related with the base inequalities. For any subset of these MIR inequalities, we generate two new inequalities by combining or “mixing” them. We show that the new inequalities are strong in the sense that they fully describe the convex hull of a special mixed-integer region associated with the base inequalities.?We discuss how the mixing procedure can be used to obtain new classes of strong valid inequalities for various mixed-integer programming problems. In particular, we present examples for production planning, capacitated facility location, capacitated network design, and multiple knapsack problems. We also present preliminary computational results using the mixing procedure to tighten the formulation of some difficult integer programs. Finally we study some extensions of this mixing procedure. Received: April 1998 / Accepted: January 2001?Published online April 12, 2001  相似文献   

19.
Recently Andersen et al. [1], Borozan and Cornuéjols [6] and Cornuéjols and Margot [9] have characterized the extreme valid inequalities of a mixed integer set consisting of two equations with two free integer variables and non-negative continuous variables. These inequalities are either split cuts or intersection cuts derived using maximal lattice-free convex sets. In order to use these inequalities to obtain cuts from two rows of a general simplex tableau, one approach is to extend the system to include all possible non-negative integer variables (giving the two row mixed-integer infinite-group problem), and to develop lifting functions giving the coefficients of the integer variables in the corresponding inequalities. In this paper, we study the characteristics of these lifting functions. We show that there exists a unique lifting function that yields extreme inequalities when starting from a maximal lattice-free triangle with multiple integer points in the relative interior of one of its sides, or a maximal lattice-free triangle with integral vertices and one integer point in the relative interior of each side. In the other cases (maximal lattice-free triangles with one integer point in the relative interior of each side and non-integral vertices, and maximal lattice-free quadrilaterals), non-unique lifting functions may yield distinct extreme inequalities. For the latter family of triangles, we present sufficient conditions to yield an extreme inequality for the two row mixed-integer infinite-group problem.  相似文献   

20.
Using a formula from Donnelly (Indiana Univ Math J 27(6):889–918, 1978), we prove that for a family of seven dimensional flat manifolds with cyclic holonomy groups the η invariant of the signature operator is an integer number. We also present an infinite family of flat manifolds with integral η invariant. The main motivation is a paper of Long and Reid (Geom Topol 4:171–178, 2000).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号