首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wenlong Yao 《Journal of Non》2008,354(18):2045-2053
The structure and properties of glasses in the MI + M2S + (0.1Ga2S3 + 0.9GeS2), M = Li, Na, K and Cs, system were studied using Raman, IR spectroscopy, DSC and density measurements to help better understand the ionic transport in these glasses. The glass forming ranges of these ternary glasses were compared to those of the binary alkali sulfide and germanium sulfide systems. The more extensive glass forming range in the Na2S system was used to examine the more extensive changes of structure and properties of these glasses as a function of Na2S content. As expected, non-bridging sulfurs (NBS) form with the addition of alkali sulfide. Unlike their oxide counterparts, however, the alkali sulfide doped glasses appear to support longer-range super-structural units. For example, evidence that the adamantine-like structure exists in the K2S and Cs2S modified glasses is found in the Raman spectra of the glasses. The structural role of the alkali iodide addition was also explored since the addition of alkali iodide helps to improve the conductivity. For most of these glasses, as observed in many other oxide glasses, the added MI dissolves interstitially into the glass structure network without changing the alkali sulfide network structure. In 0.6Na2S + 0.4(0.1Ga2S3 + 0.9GeS2) glasses, however, the added NaI may affect the glass structure as it causes systematic changes in the frequency of the Ge-S network mode as seen in the Raman spectra.  相似文献   

2.
A high-energy X-ray diffraction study has been carried out on a series of 0.5Li2S + 0.5[(1 − x)GeS2 + xGeO2] glasses with x = 0.0, 0.1, 0.2, 0.4, 0.6 and 0.8. Structure factors were measured to wave vectors as high as 30 Å−1 resulting in atomic pair distribution functions with high real space resolution. The three dimensional atomic-scale structure of the glasses was modeled by reverse Monte Carlo simulations based on the diffraction data. Results from the simulations show that at the atomic-scale 0.5Li2S + 0.5[(1 − x)GeS2 + xGeO2] glasses may be viewed as an assembly of independent chains of (Li+-S)2GeS2/2 and (Li+-O)2GeO2/2 tetrahedra as repeat units, where the Li ions occupy the open space between the chains. The new structure data may help understand the reasons for the sharp maximum in the Li+ ion conductivity at x ∼ 0.2.  相似文献   

3.
The well known and characterized fast ion conducting (FIC) LiI + Li2S + GeS2 glass-forming system has been further optimized for higher ionic conductivity and improved thermal and chemical stability required for next generation solid electrolyte applications by doping with Ga2S3 and La2S3. These trivalent dopants are expected to eliminate terminal and non-bridging sulfur (NBS) anions thereby increasing the network connectivity while at the same time increasing the Li+ ion conductivity by creating lower basicity [(Ga or La)S4/2] anion sites. Consistent with the finding that the glass-forming range for the Ga2S3 doped compositions is larger than that for the La2S3 compositions, the addition of Ga2S3 is found to eliminate NBS units to create bridging sulfur (BS) units that not only gives an improvement to the thermal stability, but also maintains and in some cases increases the ionic conductivity. The compositions with the highest Ga2S3 content showed the highest Tgs of ∼325 °C. The addition of La2S3 to the base glasses, by comparison, is found to create NBS by forming high coordination octahedral LaS63− sites, but yet still improved the chemical stability of the glass in dry air and retained its high ionic conductivity and thermal stability. Significantly, at comparable concentrations of Li2S and Ga2S3 or La2S3, the La2S3-doped glasses showed the higher conductivities. The addition of the LiI to the glass compositions not only improved the glass-forming ability of the compositions, but also increased the ionic conductivity glasses. LiI concentrations from 0 to 40 mol% improved the conductivities of the Ga2S3 glasses from ∼10−5 to ∼10−3 (Ω cm)−1 and of the La2S3 glasses from ∼10−4 to ∼10−3 (Ω cm)−1 at room temperature. A maximum conductivity of ∼10−3 (Ω cm)−1 at room temperature was observed for all of the glasses and this value is comparable to some of the best Li ion conductors in a sulfide glass system. Yet these new compositions are markedly more thermally and chemically stable than most Li+ ion conducting sulfide glasses. LiI additions decreased the Tgs and Tcs of the glasses, but increased the stability towards crystallization (Tc − Tg).  相似文献   

4.
Specimens of the glassy system: (70 − x)TeO2 + 15B2O3 + 15P2O5 + xLi2O, where x = 5, 10, 15, 20, 25 and 30 mol% were prepared by the melt-quenching. An ultrasonic pulse-echo technique was employed, at 5 MHz, for measuring: the ultrasonic attenuation, longitudinal and shear wave velocities, elastic moduli, Poisson ratio, Debye temperature and hardness of the present glasses. It is found that the gradual replacement of TeO2 by Li2O in the glass matrix up to 30 mol% leads to decrease the average crosslink density and rigidity of prepared samples which affects the properties, i.e., the hardness, ultrasonic wave velocities and elastic moduli are decreased, while the Poisson ratio and the ultrasonic attenuation are increased. Also, optical absorption spectra were recorded in the range, 200-800 nm for these glasses. The obtained results showed that a gradual shift in the fundamental absorption edge toward longer wavelengths occurred. Values of both of the optical energy gap, Eopt, and width tails, ΔE, are determined. It is observed that Eopt is decreased and ΔE increased with the increase of Li2O in the glass matrix up to 30 mol%. The compositional dependences of the above properties are discussed and correlated to the structure of tested glasses.  相似文献   

5.
Structural studies of the ternary xLi2S + (1 − x)[0.5B2S3 + 0.5GeS2] glasses using IR, Raman, and 11B NMR show that the Li2S is not shared proportionately between the GeS2 and B2S3 sub-networks of the glass. The IR spectra indicate that the B2S3 glass network is under-doped in comparison to the corresponding composition in the xLi2S + (1 − x)B2S3 binary system. Additionally, the Raman spectra show that the GeS2 glass network is over-modified. Surprisingly, however, the 11Boron static NMR gives evidence that ∼80% of the boron atoms are in tetrahedral coordinated. A super macro tetrahedron, B10S18−6 is proposed as one of the structures in these glasses in which can account for the apparent low fraction of Li2S present in the B2S3 sub-network while at the same time enabling the high fraction of tetrahedral borons in the glass.  相似文献   

6.
Glasses of the system: (70−x) TeO2 + 15B2O3 + 15P2O5 + xLi2O, where x = 5, 10, 15, 20, 25 and 30 mol% were prepared by melt quench technique. Dependencies of their glass transition temperatures (Tg) and infrared (IR) absorption spectra on composition were investigated. It is found that the gradual replacement of oxides, TeO2 by Li2O, decreases the glass transition temperature and increases the fragility of the glasses. Also, IR spectra revealed broad weak and strong absorption bands in the investigated range of wave numbers from 4000 to 400 cm−1. These bands were assigned to their corresponding bond modes of vibration with relation to the glass structure.  相似文献   

7.
《Journal of Non》2005,351(49-51):3716-3724
Li2S + GeS2 + GeO2 ternary glasses have been prepared and a wide glass-forming range was obtained. The glass transition temperatures increase with the GeO2 concentration in the glasses. The vibrational modes of both bridging (Ge–S–Ge) and non-bridging (Ge–S) sulfurs are observed in Raman and IR spectra of binary Li2S + GeS2 glasses. Additions of GeO2 to this binary glass increase the bridging oxygen band (Ge–O–Ge) at the expense of decreasing the bridging sulfur band (Ge–S–Ge), whereas the bands associated with the non-bridging sulfurs (Ge–S) remain constant in intensity up to high GeO2 concentrations. At higher concentrations of GeO2 (⩾60%), the non-bridging oxygen band, which is not observed at low and intermediate GeO2 concentrations, appears and grows stronger. From these observations, it is suggested that the added lithium ions favor the non-bridging sulfur sites over the oxygen sites to form non-bridging sulfurs, whereas the added oxygen prefers the higher field strength Ge4+ cation to form bridging Ge–O–Ge bonds. The structural groups in the Li2S + GeS2 + GeO2 glasses that are consistent with results of Raman and IR spectra are described and are used to develop a structural model of these glasses.  相似文献   

8.
G. Paramesh 《Journal of Non》2011,357(5):1479-1484
Transparent glasses in the system 0.5Li2O-0.5M2O-2B2O3 (M = Li, Na and K) were fabricated via the conventional melt quenching technique. The amorphous and glassy nature of the samples was confirmed via the X-ray powder diffraction and the differential scanning calorimetry, respectively. The frequency and temperature dependent characteristics of the dielectric relaxation and the electrical conductivity were investigated in the 100 Hz-10 MHz frequency range. The imaginary part of the electric modulus spectra was modeled using an approximate solution of Kohrausch-Williams-Watts relation. The stretching exponent, β, was found to be temperature independent for 0.5Li2O-0.5Na2O-2B2O3 (LNBO) glasses. The activation energy associated with DC conduction was found to be higher (1.25 eV) for 0.5Li2O-0.5K2O-2B2O3 (LKBO) glasses than that of the other glass systems under study. This is attributed to the mixed cation effect.  相似文献   

9.
Nobuaki Terakado 《Journal of Non》2008,354(18):1992-1999
Oxy-chalcogenide glasses with compositions of xGeO2-(100 − x)GeS2, where 0 ? x ? 100 mol%, have been prepared and studied in terms of their structures and optical properties. X-ray fluorescence spectroscopy shows that Ge:S ratio can deviate from GeS2 by ∼10 at.%, depending critically upon the preparation conditions. Raman scattering spectroscopy suggests that stoichiometric GeO2-GeS2 glasses have a heterogeneous structure in the scale of 1-100 nm. The optical gaps are nearly constant at 3.0-3.5 eV for glasses with 0 ? x ? 80 mol% and abruptly increase to ∼6 eV in GeO2. This dependence suggests that the optical gap is governed by GeS2 clusters, which are isolated and/or percolated. Composition-deviated glasses appear as orange and brown, and these glasses seem to have more inhomogeneous structures.  相似文献   

10.
E. Mansour 《Journal of Non》2011,357(5):1364-3380
Fourier transformation infrared spectra, density and DC electrical conductivity of 30Li2O · xCeO2⋅(70 − x)B2O3 glasses, where x ranged between 0 and 15 mol%, have been investigated. The results suggested that CeO2 plays the role of network modifier up to 7.5 mol%. At higher concentrations it plays a dual role; where most of ceria plays the role of network former. The density was observed to increase with increasing CeO2 content. The effect on density of the oxides in the glasses investigated is in the succession: B2O3 < Li2O < CeO2. Most of CeO2 content was found to be associated with B2O3 network to convert BO3 into B O4 units. The contribution of Li+ ions in the conduction process is much more than that due to small polarons. The conductivity of the glasses is mostly controlled by the Li+ ions concentration rather than the activation energy for CeO2 > 5 mol%. Lower than 5 mol% CeO2 the conductivity is controlled by both factors. The dependence of W on BO4 content supports the idea of ionic conduction in these glasses.  相似文献   

11.
G. Upender 《Journal of Non》2011,357(3):903-909
Infrared, EPR and optical absorption studies on (90-x)TeO2-10GeO2-xWO3 (7.5 ≤ x ≤ 30) glasses containing Cu2+ spin probe have been carried out. The Infrared spectral studies show that the structure of glass network consists of [TeO4], [TeO3]/[TeO3 + 1], [WO4], [WO6] and [GeO6] units in the disordered manner. Physical parameters such as density (ρ), molar volume (Vm), oxygen packing density (OPD), oxygen molar volume (Vo), optical basicity (Λ), oxide ion polarizability (αO2−), inter ionic distances and the concentration of ions per unit volume of Te, Ge, W, Cu and O have been determined. The spin-Hamiltonian parameters (g||, g and A||) of Cu2+ ions in the present glasses have been estimated from EPR spectra at 300 K. Bonding parameters such as α2, β12, β2, Γσ, and Γπ have been calculated from both optical absorption and EPR data. The observed variations in spin-Hamiltonian parameters and bonding parameters have been correlated to the structural modifications due to the WO3 incorporation into the TeO2 glass network at constant 10 mol% GeO2 content.  相似文献   

12.
R.G. Kuryaeva 《Journal of Non》2009,355(3):159-163
The refractive index for glass of the CaO · Al2O3 · хSiO2 system with х = 6 in the range of pressures up to 6.0 GPa was measured using a polarization-interference microscope and an apparatus with diamond anvils. The changes in the relative density characterizing the compressibility of glass were estimated from the measured refractive indices within the framework of the theory of photoelasticity. The data were compared with the previous data for glasses of the same system with х = 2 and 4. The most compressible of the three glasses in the range 2.0-6.0 GPa was the CaO · Al2O3 · 6SiO2 glass. For glasses with х = 2, 4 and 6 we calculated the degrees of polymerization of silicon-aluminum-oxygen network, NBO/T (NBO - non-bridging oxygen), which are determined as the ratio of the number of gram-ions of non-bridging oxygen atoms to the total number of gram-ions of network formers. The structure-chemical parameter NBO/T was calculated with due regard for the formation of triclusters and highly coordinated aluminum. The degree of polymerization of the CaO · Al2O3 · хSiO2 glasses increases with increasing х, which agrees with the change of their relative density under pressure.  相似文献   

13.
Pulsed neutron and high-energy X-ray diffraction, small-angle neutron scattering, Raman spectroscopy and DSC were used to study structural changes on the short, intermediate and mesoscopic range scale for sulfur-rich AsSx (x ? 1.5) and GeSx (x ? 2) glasses. Two structural regions were found in the both systems. (1) Between stoichiometric (As2S3 and GeS2) and ‘saturated’ (AsS2.3 and GeS2.7) compositions, excessive sulfur atoms form sulfur dimers and/or short chains, replacing bridging sulfur in corner-sharing AsS3/2 and GeS4/2 units. (2) Above the ‘saturated’ compositions at [As] < 30.5 at.% and [Ge] < 27 at.%, sulfur rings and longer sulfur chains (especially in the AsSx system) appear in the glass network. The glasses become phase separated with the domains of 20-50 Å, presumably enriched with sulfur rings. The longer chains Sn are not stable and crystallize to c-S8 on ageing of a few days to several months, depending on composition.  相似文献   

14.
The thermodynamical miscibility in 0.8[xB2O3-(1 − x)P2O5]-0.2K2O glasses has been studied by measuring the glass transition temperature and the mixing enthalpy. Measurements have been performed by differential scanning calorimeter and hydrofluoric acid solution calorimetry at 298 K. The enthalpies of mixing are significantly negative over the whole range of composition. The results are discussed in terms of intermolecular associations.  相似文献   

15.
Neha Gupta  S. Bhardwaj 《Journal of Non》2011,357(7):1811-1815
Crystallization kinetics and thermal properties in superionic glasses CuxAg1 − xI-Ag2O-V2O5 for x = 0.1-0.3 have been thoroughly investigated. X-ray diffraction and differential scanning calorimetry measurements confirm the precipitation of at least three compounds during crystallization, viz. AgI, Ag4V2O7 and Ag8I4V2O7. The activation energies for structural relaxation (Es) and crystallization (Ec) obtained using Moynihan and Kissinger formulation exhibit interesting trends with CuI substitution. The Es value decreases with CuI substitution in the system. Further, the Ec values corresponding to precipitation of Ag4V2O7 and Ag8I4V2O7 exhibit increasing trend, whereas, for that of AgI precipitation a decreasing trend with CuI content. The Avrami parameter calculated from Augis-Bennett method and Ozawa equation suggests predominantly surface crystallization in the glassy system. The electrical conductivity-temperature (σ-T) cycles interestingly demonstrate increasing precipitation of AgI with CuI content in the glass matrix.  相似文献   

16.
Reduction in the temperature coefficient of the optical path length, dS/dT of Li2O-Al2O3-SiO2 glass-ceramics with near-zero thermal expansion coefficient was attempted using control of the temperature coefficient of electronic polarizability, ?, and the thermal expansion coefficient, α. The dS/dT value of 2.6 mol% B2O3-doped glass-ceramic was 12.5  × 10−6/°C, which was 0.9 ×  10−6/°C smaller than that of B2O3-free glass-ceramic. On the other hand, reduction in dS/dT through B2O3 doping was not confirmed in precursor glasses. Results showed that reduction in dS/dT of the glass-ceramic through B2O3 doping is caused by the reduction in ?. The reduction in ? from B2O3 doping was probably attributable to numerical reduction in non-bridging oxide ions with larger ? value by the concentration of boron ions in the residual glass phase. In addition, application of hydrostatic pressure during crystallization was effective to inhibit precipitation of β-spodumene solid solution, which thereby decreases dS/dT. The dS/dT value of B2O3-doped glass-ceramic crystallized under 196 MPa was 11.7 ×  10−6/°C. That value was slightly larger than that of silica glass. The α value of this glass-ceramic was smaller than that of silica glass.  相似文献   

17.
Tomoharu Hasegawa 《Journal of Non》2011,357(15):2857-4499
Glasses of the Bi2O3-TeO2-B2O3 ternary system were developed and their linear and nonlinear optical properties were investigated. The absorption edges of these glasses were found to be 367-384 nm with a good transmittance in visible wavelength, although they exhibit the refractive indices as high as 1.98-2.12 at 633 nm. The absorption edges are quite steep and they are analyzed by the Urbach theory. The obtained Urbach energies of these glasses are 73-79 meV which are comparable to silica glasses. The high refractive index and its glass composition dependency are discussed according to the basics of the electronic polarizability and optical basicity. The high third order nonlinear susceptibility χ(3) = 2.0 × 10− 12 esu at 800 nm was also obtained in the 36Bi2O3-18TeO2-46B2O3 glass.  相似文献   

18.
The optical properties of Cr3+ ions in lithium metasilicate (Li2O · SiO2) transparent glass-ceramics were investigated. The main crystalline phase precipitated was the lithium metasilicate (Li2O · SiO2) crystal. The percent crystallinity and crystalline size were ranging 65-75% and 20-35 nm, respectively. The color changes drastically to deep pink from emerald green upon crystallization. New and strong absorption bands appeared and the absorption intensity increases by about 10 times that in glass. These new absorption bands are found to be derived from Cr3+ ions in octahedral sites in the lithium metasilicate crystal lattice. Cr3+ ions substitute for three Li+ ions and occupy the distorted octahedral site between single [SiO4]n chains of lithium metasilicate crystal. The ligand field parameters can be estimated: 10Dq = 13 088 cm−1, B = 453 cm−1, Dq/B = 2.89 and C = 2036 cm−1. The near-infrared luminescence centered at 1250 nm was not detected in the deep pink glass-ceramics unlike emerald green glass.  相似文献   

19.
Erbium-doped glasses with composition xGeO2-(80 − x)TeO2-10ZnO-10BaO were prepared by melt-quenching technique. The phonon sideband spectra and the optical absorption band edges for the host matrix were confirmed by means of the spectral measurements. Standard Judd-Ofelt calculations have been completed to these glasses. The dependence of up-conversion and infrared emission under 980 nm excitation on the glass composition was studied. The quantum efficiencies for the 4I13/2 → 4I15/2 transition of trivalent erbium in the glasses were estimated.  相似文献   

20.
Aluminate glasses are important materials from a fundamental structural point of view because Al is the only network former. They present also a technological interest because of their good IR transmission and ultralow optical losses. Aluminum in glasses of the system MO-Al2O3 (M = Ca, Sr, Ba) can have different coordination numbers, essentially 4 and 6, as a function of the MO/Al2O3 ratio. Using Raman spectroscopy and high field 27Al NMR spectroscopy, we have determined the structure of aluminum network as a function of MO/Al2O3 ratio with M corresponds to different alkaline-earth cations. Al is essentially in four-fold coordination with different amounts for Al2O3 between 50 and 75% but varies between Q2 and Q4 species as a function of MO/Al2O3 ratio where Q is tetrahedral species and n the number of bridging oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号