首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The graph G has star number n if any n vertices of G belong to a subgraph which is a star. Let f(n, k) be the smallest number m such that the complete graph on m vertices can be factorized into k factors with star number n. In the present paper we prove that c1nk ≤ f(n, k) < c2nk.  相似文献   

2.
Best upper and lower bounds, as functions of n, are obtained for the quantities β2(G)+β2(G?) and α2(G)+α2(G?), where β2(G) denotes the total matching number and α2(G) the total covering number of any graph G with n vertices and with complementry graph ?.The best upper bound is obtained also for α2(G)+β2(G), when G is a connected graph.  相似文献   

3.
Properties of the graph G(Ωn) of the polytope Ωn of all n × n nonnegative doubly stochastic matrices are studied. If F is a face of Ωn which is not a k-dimensional rectangular parallelotope for k ≥ 2, then G(F) is Hamilton connected. Prime factor decompositions of the graphs of faces of Ωn relative to Cartesian product are investigated. In particular, if F is a face of Ωn, then the number of prime graphs in any prime factor decomposition of G(F) equals the number of connected components of the neighborhood of any vertex of G(F). Distance properties of the graphs of faces of Ωn are obtained. Faces F of Ωn for which G(F) is a clique of G(Ωn) are investigated.  相似文献   

4.
The permanent function is used to determine geometrical properties of the set Ωn of all n × n nonnegative doubly stochastic matrices. If F is a face of Ωn, then F corresponds to an n × n (0, 1)-matrix A, where the permanent of A is the number of vertices of F. If A is fully indecomposable, then the dimension of F equals σ(A) ? 2n + 1, where σ(A) is the number of 1's in A. The only two-dimensional faces of Ωn are triangles and rectangles. For n ? 6, Ωn has four types of three-dimensional faces. The facets of the faces of Ωn are characterized. Faces of Ωn which are simplices are determined. If F is a face of Ωn which is two-neighborly but not a simplex, then F has dimension 4 and six vertices. All k-dimensional faces with k + 2 vertices are determined. The maximum number of vertices of a k-dimensional face is 2k. All k-dimensional faces with at least 2k?1 + 1 vertices are determined.  相似文献   

5.
Given k directed graphs G1,…,Gk the Ramsey number R(G1,…, Gk) is the smallest integer n such that for any partition (U1,…,Uk) of the arcs of the complete symmetric directed graph Kn, there exists an integer i such that the partial graph generated by U1 contains G1 as a subgraph. In the article we give a necessary and sufficient condition for the existence of Ramsey numbers, and, when they exist an upper bound function. We also give exact values for some classes of graphs. Our main result is: R(Pn,….Pnk-1, G) = n1…nk-1 (p-1) + 1, where G is a hamltonian directed graph with p vertices and Pni denotes the directed path of length nt  相似文献   

6.
Let G be a planar graph having n vertices with vertex degrees d1, d2,…,dn. It is shown that Σi=1ndi2 ≤ 2n2 + O(n). The main term in this upper bound is best possible.  相似文献   

7.
For any tournament T on n vertices, let h(T) denote the maximum number of edges in the intersection of T with a transitive tournament on the same vertex set. Sharpening a previous result of Spencer, it is proved that, if Tn denotes the random tournament on n vertices, then, P(h(Tn) ≤ 12(2n) + 1.73n32) → 1 as n → ∞.  相似文献   

8.
9.
Let G be a (k + 1)-graph (a hypergraph with each hyperedge of size k + 1) with n vertices and average degreee t. Assume k ? t ? n. If G is uncrowded (contains no cycle of size 2, 3, or 4) then there exists and independent set of size ck(nt)(ln t)1k.  相似文献   

10.
We are interested in the parallel computation of a linear mapping of n real variables by a network of computers with restricted means of communication between them and without any common memory. Let Mn×n(R) denote the algebra of n×n real matrices, and let G be the graph associated with a binary, reflexive and symmetric relation R over {1,2, …,n}. We define
AR = {A?Mn×n(R):aij≠ 0 implies iRj}
A matrix M∈Mn×n(R) is said to be realizable on G if it can be expressed as a product of elements of AR. Therefore, every matrix of Mn×n(R) is realizable on G if and only if AR generates Mn×n(R). We show that AR generates M n×n(R) if and only if G is connected.  相似文献   

11.
Denote by M(n) the smallest positive integer such that for every n-element monoid M there is a graph G with at most M(n) vertices such that End(G) is isomorphic to M. It is proved that 2(1 + o(1))nlog2n ≤M(n)≤n · 2n + O(n). Moreover, for almost all n-element monoids M there is a graph G with at most 12 · n · log2n + n vertices such that End(G) is isomorphic to M.  相似文献   

12.
It is shown that if G is a graph of order p ≥ 2 such that deg u + deg vp ? 1 for all pairs u, v of nonadjacent vertices, then the edge-connectivity of G equals the minimum degree of G. Furthermore, if deg u + deg vp for all pairs u, v of nonadjacent vertices, then either p is even and G is isomorphic to Kp2 × K2 or every minimum cutset of edges of G consists of the collection of edges incident with a vertex of least degree.  相似文献   

13.
An (n, j) linear forest L is the disjoint union of nontrivial paths, such that j of the paths have an odd number of vertices and the union has n vertices. For L, an (n1.j1) linear forest and l2 an (n.j1) linear forest, we show that
r(L1,L2) = max{n1 ·(n2?j2)/2 ? 1, n2 + (n1 ? j1)/2 ? 1}.
This answers in the affirmative a conjecture of Burr and Roberts.  相似文献   

14.
If Ω denotes an open subset of Rn (n = 1, 2,…), we define an algebra g (Ω) which contains the space D′(Ω) of all distributions on Ω and such that C(Ω) is a subalgebra of G (Ω). The elements of G (Ω) may be considered as “generalized functions” on Ω and they admit partial derivatives at any order that generalize exactly the derivation of distributions. The multiplication in G(Ω) gives therefore a natural meaning to any product of distributions, and we explain how these results agree with remarks of Schwartz on difficulties concerning a multiplication of distributions. More generally if q = 1, 2,…, and ?∈OM(R2q)—a classical Schwartz notation—for any G1,…,GqG(σ), we define naturally an element ?G1,…,Gq∈G(σ). These results are applied to some differential equations and extended to the vector valued case, which allows the multiplication of vector valued distributions of physics.  相似文献   

15.
Let (A, G, α) be a C1-dynamical system, where G is abelian, and let φ be an invariant state. Suppose that there is a neighbourhood Ω of the identity in G? and a finite constant κ such that Πi = 1n φ(xi1xi) ? κ Πi = 1n φ(xixi1) whenever xi lies in a spectral subspace Rαi), where Ω1 + … + Ωn ? Ω. This condition of complete spectral passivity, together with self-adjointness of the left kernel of φ, ensures that φ satisfies the KMS condition for some one-parameter subgroup of G.  相似文献   

16.
17.
An n-tournament is a complete labelled digraph on n vertices without loops or multiple arcs. A tournament's score sequence is the sequence of the out-degrees of its vertices arranged in nondecreasing order. The number Sn of distinct score sequences arising from all possible n-tournaments, as well as certain generalizations are investigated. A lower bound of the form
Sn > C14nn52
(C1 a constant) and an upper bound of the form Sn < C24nn2 are proved. A q-extension of the Catalan numbers
c1(q)=1 and cn(q)=i?1n?1ci(q)cn?1(q)qi(n?i?1)
is defined. It is conjectured that all coefficients in the polynomial Cn(q) are at most O(4nn3). It is shown that if this conjecture is true, then
Sn<C34nn52
  相似文献   

18.
An elementary proof is given of the author's transformation formula for the Lambert series Gp(x) = Σn?1 n?pxn(1?xn) relating Gp(e2πiτ) to Gp(e2πiAτ), where p > 1 is an odd integer and Aτ = (aτ + b)(cτ + d) is a general modular substitution. The method extends Sczech's argument for treating Dedekind's function log η(τ) = πiτ12 ? G1(e2πiτ), and uses Carlitz's formula expressing generalized Dedekind sums in terms of Eulerian functions.  相似文献   

19.
The path-connectivity of a graph G is the maximal k for which between any k pairs of vertices there are k edge-disjoint paths (one between each pair). An upper bound for the path-connectivity of nq(q<1) separable graphs [6] is shown to exist.If the edge-connectivity of a graph is KE then between any two pairs of vertices and for every t?KE there exists a t?t′?t+1 such that there are t′ paths between the first pair and KE?t′ between the second pair. All paths are edge-disjoint.  相似文献   

20.
A proof is presented of the conjecture of Alspach and Pullman that for any digraph G on n ≥ 4 vertices, the path number of G is at most [n24].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号