首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
聚L-赖氨酸修饰电极对去甲肾上腺素的电催化氧化   总被引:7,自引:2,他引:7  
研究了L 赖氨酸在玻碳电极上电化学聚合的条件及修饰电极的电化学特性,发现该聚合膜对去甲肾上腺素(NE)的电氧化有显著的催化作用,在磷酸盐缓冲溶液(pH7)中,恒电位-0.2V富集2.0min后,用方波溶出伏安法对NE进行了测定,线性范围为1.0×10-8~5.0×10-4mol L,检出限(信噪比=3)为8 2×10-10mol L。对1.0×10-7mol LNE平行测定8次相对标准偏差为2 4%。  相似文献   

2.
马心英  林宪杰 《应用化学》2009,26(3):287-291
利用循环伏安法制备了聚缬氨酸修饰电极,在缬氨酸浓度为0.01 mol/L的磷酸盐缓冲溶液(pH=9.0)中,起止电位范围为1.0~2.4 V,以40 mV/s扫描速率循环扫描9周进行聚合. 聚缬氨酸膜对去甲肾上腺素(NE)的电化学氧化具有明显的催化作用. 研究了NE在聚缬氨酸修饰电极上的电化学行为,建立了测定NE的电化学分析新方法. pH值在2.2~8.0范围内,研究了磷酸盐缓冲溶液pH值对NE电化学行为的影响. 结果表明,氧化还原峰电位随pH值升高发生负移;在pH=4.0磷酸盐缓冲溶液中,NE在修饰电极上呈现1对灵敏的氧化还原峰,利用循环伏安法测定NE还原峰电流可排除抗坏血酸(AA)干扰. NE在聚缬氨酸修饰电极上的还原峰电流与其浓度在4.6×10-7~1.1×10-5 mol/L和1.1×10-5~1.2×10-4 mol/L范围内呈良好线性关系;相关系数分别为0.995 7和0.991 8;检出限(S/N=3)为8.0×10-8 mol/L;其回归方程为ipc(A)=6.80×10-7+1.05c,ipc(A)=1.23×10-5+0.16c. 修饰电极具有良好的灵敏度、选择性和稳定性,可用于去甲肾上腺素针剂样品分析.  相似文献   

3.
聚L-丝氨酸修饰电极伏安法测定对乙酰氨基酚   总被引:4,自引:1,他引:3  
对乙酰氨基粉(扑热息痛)为芳环对位取代的酰氨类药物,有解热、镇痛作用。临床上广泛用于感冒发烧、关节痛、神经痛及偏头痛、癌性痛及手术后止痛[1]。但过多服用对乙酰氨基酚对人体会造成伤害,对消化系统的影响主要表现为恶心、呕吐、压食、出汗、腹痛等症状;对泌尿系统、血液系统、呼吸系统都有影响,还能使对阿司匹灵过敏患者的支气管痉挛加重,严重时会抑制呼吸中枢。因此建立对乙酰氨基酚的灵敏检测方法是非常必要的。当前用于检测对乙酰氨基酚的方法主要有滴定法[2]、分光光度法[3]、高效液相色谱法[4]、毛细管电泳[5]、荧光法[6]以及电…  相似文献   

4.
循环伏安法测定去甲肾上腺素   总被引:1,自引:0,他引:1  
制备了聚L-半胱氨酸修饰电极,研究了去甲肾上腺素在聚合物薄膜上的电化学行为,试验结果表明:在磷酸盐缓冲溶液中,聚L-半胱氨酸薄膜对去甲肾上腺素的电化学氧化具有明显的催化作用,对应用此修饰电极的循环伏安法测定去甲肾上腺素的条件进行试验并优化.结果发现:在pH 7.0的磷酸盐缓冲介质中测定时可排除肾上腺素与抗坏血酸干扰.还原峰电流的测定值与去甲肾上腺素浓度在5.0×10-7~1.2×10-4mol·L-1范围内呈线性关系,其检出限为2.0×10-8mol·L-1,已用于针剂样品分析,测得回收率在97.6%~102.1%之间.  相似文献   

5.
银掺杂聚L-天冬氨酸修饰电极的制备及对肾上腺素的测定   总被引:1,自引:0,他引:1  
陈高礼  马伟  孙登明 《应用化学》2010,27(3):353-357
利用循环伏安法,研究了银和L-天冬氨酸在玻碳电极表面电化学聚合的条件,制备了银掺杂聚L-天冬氨酸修饰电极。研究了肾上腺素在修饰电极上的电化学行为,建立了循环伏安法测定肾上腺素的新方法。在pH=3.5的磷酸盐缓冲溶液中,扫描速率为50mV/s时,肾上腺素在修饰电极上产生一对明显的氧化还原峰,峰电位分别为Epa=0.447V,Epc=0.387V。用循环伏安法测定时,氧化峰电流与肾上腺素浓度分别在8.00×10-8~1.00×10-5mol/L和1.00×10-5~1.00×10-4mol/L范围内呈良好的线性关系,检出限为8.0×10-9mol/L。  相似文献   

6.
制备了碳纤维微电极,将洁净的碳纤维微电极浸入Nafion溶液中,采用电沉积的方法制得Nafion修饰碳纤维微电极。采用循环伏安法(CV)、差分脉冲伏安法(DPV)研究了去甲肾上腺素(NE)和抗坏血酸(AA)在电极上的电化学行为。结果表明:在最优条件下制备的Nafion修饰电极能完全屏蔽AA的电化学响应,而对NE仍表现出良好的电化学响应。修饰电极能在1.0 mmol/L AA的共存下选择性地测定NE,采用DPV进行检测,NE的氧化峰电流与其浓度在1.0×10~(-6)~1.0×10~(-4)mol/L范围内呈良好的线性关系,相关系数(r~2)为0.991 2,检出限(S/N=3)为8.6×10~(-7)mol/L。利用该方法测定了模拟样品中NE的含量,平均加标回收率为101.6%。该电极的重现性和稳定性良好,且具有良好的灵敏度和选择性,有望用于复杂生物环境中NE浓度的检测。  相似文献   

7.
利用循环伏安法将银和L-缬氨酸聚合修饰在玻碳电极表面,制成银掺杂聚L-缬氨酸修饰电极(Ag-PLV/GCE),研究了肾上腺素在该电极上的电化学行为,建立了电化学测定肾上腺素的新方法.在pH3.5的磷酸盐缓冲溶液中,扫描速率为40 mV/s时,肾上腺素在修饰电极上产生一对氧化还原峰,Epa=0.422 V,Epc=0.3...  相似文献   

8.
张宏  金葆康 《分析化学》2002,30(11):1285-1288
利用电沉积的方法制得纳米金修饰玻碳电极 ,该修饰电极对去甲肾上腺素 (NE)氧化反应有催化作用。去甲肾上腺素在纳米金修饰玻碳电极上有很强的吸附作用。研究了磷酸缓冲溶液的pH值和浓度对NE的电化学行为的影响。从去甲肾上腺素和抗坏血酸在纳米金修饰电极的循环伏安图上可观察到两个明显分开的氧化峰 ,峰电位差达到 1 3 1mV ,因此 ,可利用该修饰电极在抗坏血酸存在下选择性测定去甲肾上腺素 ,线性范围为 1× 1 0 - 4 ~5× 1 0 - 6 mol L。  相似文献   

9.
马伟  孙登明 《分析化学》2007,35(1):66-70
用循环伏安法制备了聚L-精氨酸修饰玻碳电极,研究了多巴胺和肾上腺素在修饰电极上的电化学行为,建立了同时测定多巴胺和肾上腺素的新方法。在pH7.5的磷酸盐缓冲溶液中,多巴胺在修饰电极上产生一对氧化还原峰,峰电位分别为0.276V和0.059V;肾上腺素在修饰电极上产生3个氧化峰和一个还原峰,峰电位分别为0.262V、0.121V、-0.126V和-0.316V(对Ag/AgCl电极)。多巴胺和肾上腺素同时存在时ΔEpc=375mV,用还原峰对多巴胺和肾上腺素同时测定的线性范围分别为8.0×10-7~5.0×10-4mol/L和5.0×10-7~5.0×10-5mol/L;检出限分别为3.0×10-7mol/L和1.0×10-7mol/L。大量的抗坏血酸和尿酸不干扰测定,用于人尿液中多巴胺和肾上腺素样品的同时测定,结果满意。  相似文献   

10.
在含有1.0mmol.L-1硝酸银、5.58×10-2 mol.L-1色氨酸的溶液中,于-0.8~1.8V(vs.Ag/AgCl)电位下,在玻碳电极表面电沉积一层银-色氨酸复合膜,制得银-色氨酸复合膜修饰玻碳电极(Ag-TRY/GCE)。采用扫描电镜对电极表面的性能进行表征,循环伏安法对其电化学性能进行研究。试验发现:在pH 6.0磷酸盐缓冲溶液中,去甲肾上腺素(NE)在修饰电极出现一对明显的氧化还原峰,氧化峰电位为0.306V,还原峰电位为0.368V,提出了用循环伏安法测定NE的方法。在试验条件下,氧化峰电流与去甲肾上腺素浓度在3.4×10-7~8.3×10-6 mol.L-1和8.3×10-6~1.1×10-4 mol.L-1两段范围内呈线性关系,检出限(3S/N)为4.3×10-8 mol.L-1。修饰电极用于药物中去甲肾上腺素的测定,加标回收率在95.6%~99.4%之间。  相似文献   

11.
A glassy carbon electrode (GCE) was modified with electropolymerization of meso-tetrakis(2-aminophenyl)porphyrin (TAPP) in acetonitrile by cyclic voltammetry (CV). The voltammetric behavior of norepinephrine (NE) in the presence of excess ascorbic acid (AA) was investigated at the modified electrode by cyclic and square wave voltammetry (SWV) in phosphate buffer solution. The modified electrode gave higher selectivity and highly effective electroactivity to NE oxidation in voltammetric measurements of NE in the presence of AA and epinephrine. In pH 7.4 phosphate buffer solution, the peak current increased linearly with the concentration of NE in two concentration ranges of 1.0×10−6 to 5.0×10−5 mol dm−3.  相似文献   

12.
聚赖氨酸修饰电极在抗坏血酸共存时测定肾上腺素   总被引:3,自引:0,他引:3  
在pH8.0磷酸盐缓冲溶液(PBS)中利用循环伏安法制备了聚赖氨酸修饰电极,在pH4.0 PBS中,聚赖氨酸膜对肾上腺素(EP)的电化学氧化具有明显的催化作用.利用循环伏安法测定EP还原峰电流可排除抗坏血酸(AA)干扰.肾上腺素还原峰电流与其浓度分别在6.3×10-7mol/L~1.0×10-5 mol/L与1.0×10-5mol/L~1.2×10-4 mol/L范围内呈良好线性关系,相关系数分别为0.9978与0.9975,;检出限(S/N=3)为7.2×10-8mol/L.该方法具有良好的灵敏度、选择性,已用于针剂样品分析.  相似文献   

13.
聚吖啶红修饰玻碳电极在抗坏血酸共存时测定肾上腺素   总被引:6,自引:0,他引:6  
研究了聚吖啶红修饰玻碳电极的制备及肾上腺素在此修饰电极上的电化学行为。在pH7.4的磷酸盐缓冲溶液中,肾上腺素在修饰电极上呈现3个峰,一个还原峰和两个氧化峰,其峰电位随着pH的增加而负移。肾上腺素浓度在1.0×10-6~1.0×10-4mol L的范围内与其氧化峰电流呈线性关系,回归方程为ip(10μA)=1.160 0.4390c(mol L),相关系数r=0.9981,检出限为1.0×10-7mol L。实验结果表明:该修饰电极能有效消除抗坏血酸的干扰,方法用于注射液中肾上腺素的检测,其回收率在93.7%~100.3%范围内。  相似文献   

14.
Glassy carbon electrodes modified with (5-amino-1,10-phenanthroline)bis(bipyridine)ruthium(II) chloride hydrate, [(bpy)2Ru(5-phenNH2)]Cl2·H2O, are shown to oxidize hydrazine with excellent sensitivity. The presence of an amine group on the ruthenium complex facilitates electropolymerization onto the electrode surface. Using cyclic voltammetry, a large catalytic current is observed upon oxidation of hydrazine in phosphate buffer (pH 5.0), compared to the current obtained from the ruthenium-modified electrode with no hydrazine present. The sensitivity of cyclic voltammetry is sufficient for obtaining a linear calibration curve for hydrazine over the range of 10−5 to 10−2 M. Hydrodynamic amperometry was used to determine the working potential for flow injection analysis. The limit of detection for hydrazine was determined to be 8.5 μM using FIA. The thickness of these films was shown to increase linearly with the number of electropolymerization cycles, in the range of 1000-2500 nm for 5-20 cycles, respectively, using Rutherford backscattering spectrometry (RBS). RBS analysis also suggests that the film is multilayered with the outermost layers containing a high ruthenium concentration, followed by layers where the concentration of ruthenium decreases linearly and approaches zero at the electrode surface.  相似文献   

15.
A Nafion/ruthenium oxide pyrochlore chemically modified electrode (CME) was used for the selective determination of dopamine (DA) in the presence of a high concentration of ascorbic acid by square-wave voltammetry. Compared to a bare glassy carbon electrode, the CME exhibits an apparent shift of the oxidation potentials in cathodic direction and a marked enhancement of the current response. The selective sensing of DA is achieved by combining the electrocatalytic function of the ruthenium oxide pyrochlore catalyst with the charge-exclusion and preconcentration features of Nation. With a preconcentration time of 60 s at a potential of −0.3 V (vs. Ag/AgCl), linear calibration plots are obtained for dopamine in 0.1 M, phosphate buffer (pH 7.4) over 0–20 μM with a detection limit (3σ) of 0.1 μM.  相似文献   

16.
Glassy carbon electrodes were modified electrochemically by pretreatment in sulfate, phosphate or carbonate solutions by means of cycling the potential well into the positive limit of the solvent. Electrodes treated in this manner were then used to incorporate and concentrate a variety of redox species that were either cations or aromatic containing compounds, including Ru(bpy)2+3, Ru(NH3)3+6, Cu(NH3)2+4, ferrocene, methylviologen, 1,4-benzoquinone, anthraquinone-2-sulfonate, riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Surface-equivalent concentrations ranged from 5 × 10?9 to 1 × 10?7 mol cm?2 for electrodes pretreated for 10 min in sulfuric acid. An E1/2 vs. pH study of 1,4-benzoquinone, riboflavin, FMN and FAD in modified electrodes shows that the pKa values shift toward higher pH (nearly 2 pH units). Results concerning the incorporation of redox compounds detected only by mediation with other electroactive complexes and the study of the modified electrodes in electrocatalysis are also discussed.  相似文献   

17.
利用电化学沉积法制备了稀土Eu(Ⅲ)离子掺杂的类普鲁士蓝化学修饰玻碳电极,与裸玻碳电极相比,该修饰电极使对硝基苯酚的还原电位大大降低,峰电流显著增大,线性范围明显变宽。讨论了酸度、沉积量、扫速、底液等条件对对硝基苯酚在修饰电极上催化还原的影响。分别用循环伏安法和示差脉冲伏安法进行定量分析,对硝基苯酚的还原电流与浓度在2.0×10-5~2.0×10-3mol/L和2.0×10-7~8.0×10-6mol/L范围内呈良好的线性关系,检出限(3σ)为6.0×10-8mol/L。该电极可用于环境水样检测。  相似文献   

18.
Under neutral conditions, the electrocatalytic oxidation of sulphydryl compounds at rotating graphite electrodes modified with tetracyano-p-quinodimethane, tetrathiafulvalene and 1,1′-dimethylferrocene proceeds at potentials higher than ?0.1 V vs. SCE. The sensitivity of the electrodes depends on the nature of both the modifier and the sulphydryl compounds, and in 0.1 M potassium phosphate buffer solution (pH 7) it reaches 0.16 A 1 mol?1 cm?2. The electrode sensitivity is higher in a weakly alkaline medium. The sensitivity is only slightly dependent on the electrode rotation speed.  相似文献   

19.
A multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE) was described for the simultaneous determination of trace levels of cadmium and lead by anodic stripping voltammetry (ASV). In pH 4.5 NaAc-HAc buffer containing 0.02 mol/l KI, Cd2+ and Pb2+ first adsorb onto the surface of a MWNT film coated GCE and then reduce at −1.20 V. During the positive potential sweep, reduced cadmium and lead were oxidized, and two well-defined stripping peaks appeared at −0.88 and −0.62 V. Compared with a bare GCE, a MWNT film coated GCE greatly improves the sensitivity of determining cadmium and lead. Low concentration of I significantly enhances the stripping peak currents since it induces Cd2+ and Pb2+ to adsorb at the electrode surface. The striping peak currents change linearly with the concentration of Cd2+ from 2.5×10−8 to 1×10−5 mol/l and with that of Pb2+ from 2×10−8 to 1×10−5 mol/l. The lowest detectable concentrations of Cd2+ and Pb2+ are estimated to be 6×10−9 and 4×10−9 mol/l, respectively. The high sensitivity, selectivity, and stability of this MWNT film coated electrode demonstrated its practical application for a simple, rapid and economical determination of trace levels of Cd2+ and Pb2+ in water samples.  相似文献   

20.
Conductive carbon cement (CCC) was evaluated as matrix material for the preparation of electrodes bulk-modified with electrocatalysts. For pure CCC electrodes the background current characteristics were examined. In acidic or neutral phosphate buffers the useful electrode potential range was from −0.3 to + 1.0 V vs. SCE, while in 0.1 mol 1−1 NaOH it was from −0.3 to + 0.7 V. The electrochemical reversibility of CCC electrodes was examined by measuring the standard rate constants for the reduction of hexacyanoferrate (III) and the oxidation of hydroquinone, using cyclic voltammetry (CV) and rotating disk experiments. The reversibility of a CCC electrode was comparable with that of a freshly polished glassy carbon electrode and better than that of carbon paste electrodes. CCC was used as matrix for the preparation of electrodes bulk-modified with cuprous oxide and cobalt phthalocyanine (CoPC). With a Cu2O-CCC electrode the oxidation potential of glucose, which shows sluggish kinetics at unmodified carbon electrodes, was strongly reduced. The kinetics of the mediated glucose oxidation has been studied with a rotating disk electrode. It was shown that at glucose concentrations higher than approximately 1 mmol l−1 the electrochemical regeneration of the catalyst becomes rate-determining. The Cu2O-CCC modified electrode has been applied with a constant potential in flow-injection analysis for the determination of glucose. The long-term stability of the electrode was studied; repeated injections of a glucose solution during a period of 6 h yielded a relative standard deviation of the peak height of 1.8% (n = 57). In CV experiments the electrocatalytic activity of CoPC was shown for the oxidation of various compounds such as penicillamine, hydrazine and bile acids. Application of the CoPC-CCC electrode for the detection of bile acids in flow-through detection with a constant or pulsed potential failed, due to a rapid deactivation of the electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号