首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steady mixed convection boundary layer flow over a horizontal circular cylinder, generated by Newtonian heating in which the heat transfer from the surface is proportional to the local surface temperature, is considered in this study. The governing boundary layer equations are first transformed into a system of non-dimensional equations via the non-dimensional variables, and then into non-similar equations before they are solved numerically using a numerical scheme known as the Keller-box method. Numerical solutions are obtained for the skin friction coefficient Re 1/2 C f and the local wall temperature θ w (x) as well as the velocity and temperature profiles with two parameters, namely the mixed convection parameter λ and the Prandtl number Pr.  相似文献   

2.
The effects of suction/injection on steady laminar mixed convection boundary layer flow over a permeable horizontal surface of a wedge in a viscous and incompressible fluid is considered in this paper. The similarity solutions of the governing boundary layer equations are obtained for some values of the suction/injection parameter f 0, the constant exponent m of the wall temperature as well as the mixed convection parameter λ. The resulting system of nonlinear ordinary differential equations is solved numerically for both assisting and opposing flow regimes using an implicit finite-difference scheme known as the Keller-box method. Numerical results for the reduced skin friction coefficient, the local Nusselt number, and the velocity and temperature profiles are obtained for various values of parameters considered. Dual solutions are found to exist for the case of opposing flow.  相似文献   

3.
A transient two‐dimensional computational model of combined natural convection, conduction, and radiation in a cavity with an aspect ratio of one, containing air as a laminar and non‐participating fluid, is presented. The cavity has two opaque adiabatic horizontal walls, one opaque isothermal vertical wall, and an opposite semitransparent wall, which consists of a 6‐mm glass sheet with a solar control coating of SnS–CuxS facing the cavity. The semitransparent wall also exchanges heat by convection and radiation from its external surface to the surroundings and allows solar radiation pass through into the interior of the cavity. The momentum and energy equations in the transient state were solved by finite differences using the alternating direction implicit (ADI) technique. The transient conduction equation and the radiative energy flux boundary conditions are coupled to these equations. The results in this paper are limited to the following conditions: 104≤Gr≤106, an isothermal vertical cold wall of 21°C, outside air temperatures in the range 30°C≤T0≤40°C and incident solar radiation of AM2 (750 W m−2) normal to the semitransparent wall. The model allows calculation of the redistribution of the absorbed component of solar radiation to the inside and outside of the cavity. The influences of the time step and mesh size were considered. Using arguments of energy balance in the cavity, it was found that the percentage difference was less than 4 per cent, showing a possible total numerical error less than this number. For Gr=106 a wave appeared in the upper side of the cavity, suggesting the influence of the boundary walls over the air flow inside the cavity. A Nusselt number correlation as a function of the Rayleigh number is presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
A detailed numerical study has been performed to investigate the combined heat and mass transfer in laminar mixed convection channel flows with uniform wall heat flux. In an initial effort the liquid film on the channel wall is assumed to be extremely thin in thickness. Major dimensionless groups governing the present problem areGr T,Gr Mx,Pr,Sc, φ andRe. Results are specifically presented for an air-water system under various conditions. The effects of wall heating flux, the Reynolds number and the relative humidity of the moist air in the ambient on the momentum, heat and mass transfer in the flow are investigated in great detail.  相似文献   

5.
This paper describes a numerical and theoretical study of the transient natural convection heating of a two-dimensional rectangular enclosure filled with fluid. The heating is applied suddenly along one of the side walls, while the remaining three walls are maintained insulated. It is shown that the process has two distinct phases, an early period dominated by conduction and a late period dominated by convection. The scaling laws for the heat transfer rate and the effectiveness (energy storage fraction) are determined based on scale analysis. These theoretical results are confirmed by numerical experiments conducted in the domain Ra = 103−106, Pr = 7, A = 1, where Ra is the Rayleigh number based on height and initial temperature difference, Pr is the Prandtl number, and A is the height/length ratio of the enclosure. Correlations for heat transfer rate and effectiveness are constructed by comparing the theoretical scaling laws with the numerical results.  相似文献   

6.
Turbulent natural convection and conduction in a square enclosure bounded by a massive wall with a localized heating is numerically studied. The bounding solid wall has a relative thermal conductivity of 10 and a relative thickness of 0.1. Losses to the surroundings are specified using a Biot number of 500. Two-dimensional equations of conservation of mass, momentum and energy, with the Boussinesq approximation and using the κ-ε model for turbulence are solved using finite difference method. Grids are generated in a nonuniform manner so that steep gradients near the wall regions are accounted for as required. Numerical solution is obtained for Ra numbers ranging from 106 to 1013. The position of the source is also investigated. It is found that the heat transfer by convection is the highest when the heat source is located at the upper part of the cavity. The turbulent properties show also the same conclusion. Received on 4 November 1998  相似文献   

7.
Effects of a conductive wall on natural convection in a square porous enclosure having internal heating at a rate proportional to a power of temperature difference is studied numerically in this article. The horizontal heating is considered, where the vertical walls heated isothermally at different temperatures while the horizontal walls are kept adiabatic. The Darcy model is used in the mathematical formulation for the porous layer and finite difference method is applied to solve the dimensionless governing equations. The governing parameters considered are the Rayleigh number (0 ???Ra ???1000), the internal heating and the local exponent parameters (0 ????? ???5), (1 ????? ???3), the wall to porous thermal conductivity ratio (0.44 ???Kr ???9.9) and the ratio of wall thickness to its width (0.02 ???D ???0.5). The results are presented to show the effect of these parameters on the fluid flow and heat transfer characteristics. It is found a strong internal heating can generate significant maximum fluid temperature more than the conductive solid wall. Increasing value thermal conductivity ratio and/or decreasing the thickness of solid wall can increase the maximum fluid temperature. It is also found that at very low Rayleigh number, the heat transfer across the porous enclosure remain stable for any values of the thermal conductivity ratio.  相似文献   

8.
An analysis has been performed to study the influence of velocity dependent dispersion on transverse heat transfer in mixed convection flow above a horizontal wall of prescribed temperature in a saturated porous medium. The Boussinesq approximation and boundary layer analysis were used to numerically obtain gravity affected temperature and velocity distributions within the frames of Darcy's law and a total thermal diffusivity tensor comprising both of constant coefficient heat conduction and velocity proportional mechanical heat dispersion. Dependending on Pe, the molecular Peclét number basing on the effective thermal diffusivity and the velocity of the oncoming flow, density coupling has distinct influences on heat transfer rates between the wall surface and the porous medium flow region. For small Peclét numbers, when heat conduction is the prevailing mechanism, wall heat fluxes are the higher the larger the density difference between the oncoming and the near wall fluid is. The opposite is true for larger Peclét numbers, when mechanical heat dispersion is the main cause of heat spreading. For Pe tending to infinity these wall heat fluxes approach finite maximum values in the total heat diffusivity model, they grow beyond any limit if only constant coefficient heat conduction is considered. Thus, the inclusion of mechanical heat dispersion effects yields physically more realistic predictions. Received on 18 September 1996  相似文献   

9.
A numerical study has been carried out on inclined open shallow cavities, which are formed by a wall and horizontal fins. Constant heat flux is applied on the surface of the wall inside the cavity while its other surface was kept isothermal. The wall and the fins are conductive. Conjugate heat transfer by natural convection and conduction is studied by numerically solving equations of mass, momentum and energy. Streamlines and isotherms are produced, heat and mass transfer is calculated. A parametric study is carried out using following parameters: Rayleigh number from 106 to 1012, conductivity ratio from 1 to 60, open cavity aspect ratio from 1 to 0.125, dimensionless end wall thickness from 0.05 to 0.20, horizontal walls from 0.01 to 0.15 and inclination of the end wall from 90° to 45°. It is found that the volume flow rate and Nusselt number are a decreasing function of the cavity aspect ratio, horizontal fin thickness and conductivity ratio. They are an increasing function of end wall thickness and inclination angle, except in the latter case optima exist at high Rayleigh numbers.  相似文献   

10.
A model is developed for the study of mixed- convection film condensation from downward flowing vapors onto a sphere with variable wall temperature. The model combined natural convection dominated and forced convection dominated film condensation, concerning effects of pressure gradient (P), interfacial vapor shear drag and non-uniform wall temperature variation (A), has been investigated and solved numerically. The effect of pressure gradient on the dimensionless mean heat transfer, NuˉRe−1/2 will remain almost uniform with increasing P until for various corresponding available values of F. Meanwhile, the dimensionless mean heat transfer, NuˉRe−1/2 is increasing significantly with F for its corresponding available values of P. Although the non-uniform wall temperature variation has an appreciable influence on the local film flow and heat transfer; however, the dependence of mean heat transfer on A can be almost negligible. Received on 10 October 1996  相似文献   

11.
The natural convection heat transfer in inclined rectangular enclosures with perfectly conducting fins attached to the heated wall is numerically studied. The parameters governing this problem are the Rayleigh number (102Ra≤2×105), the aspect ratio of the enclosures (2.5≤A=H′/L′≤∞), the dimensionless lengths of the partitions (0≤B=?′/L′≤1), the aspect ratio of micro-cavities (AC=h′/L′≤0.33), the inclination angle (0≤φ≤60°) and the Prandtl number (Pr=0.72). The results indicate that the heat transfer through the cover is considerably affected by the presence of the fins. At low Rayleigh numbers, the heat transfer regime is dominated by conduction. When B≈0.75 and C≈0.33, the heat transfer through the cold wall decreases considerably. This trend is enhanced when the enclosure is inclined. Useful engineering correlations are derived for practical applications.  相似文献   

12.
We study numerically in this paper the natural convective cooling of a vertical plate. The full transient heat conduction equation for the plate, coupled with the natural convection boundary layer equations are solved numerically for a wide range of the parametric space. Assuming a large Rayleigh number for the natural convection flow, the balance equations are reduced to a system of three differential equations with three parameters: the Prandtl number of the fluid, Pr, a non-dimensional plate thermal conductivity α and the aspect ratio of the plate ?. The nondimensional cooling time depends mainly on α/?2, obtaining a minimum of this time for values of 1?α??2.  相似文献   

13.
A model is developed for the study of mixed convection film condensation from downward flowing vapors onto a sphere with uniform wall heat flux. The model combined natural convection dominated and forced convection dominated film condensation, including effects of pressure gradient and interfacial vapor shear drag has been investigated and solved numerically. The separation angle of the condensate film layer, φ s is also obtained for various pressure gradient parameters, P * and their corresponding dimensionless Grashof?'s parameters, Gr *. Besides, the effect of P * on the dimensionless mean heat transfer, will remain almost uniform with increasing P * until for various corresponding available values of Gr *. Meanwhile, the dimensionless mean heat transfer, is increasing significantly with Gr * for its corresponding available values of P *. For pure natural-convection film condensation, is obtained.  相似文献   

14.
Mixed convection flow in a two-sided lid-driven cavity filled with heat-generating porous medium is numerically investigated. The top and bottom walls are moving in opposite directions at different temperatures, while the side vertical walls are considered adiabatic. The governing equations are solved using the finite-volume method with the SIMPLE algorithm. The numerical procedure adopted in this study yields a consistent performance over a wide range of parameters that were 10−4 ≤ Da ≤ 10−1 and 0 ≤ Ra I ≤ 104. The effects of the parameters involved on the heat transfer characteristics are studied in detail. It is found that the variation of the average Nusselt number is non-linear for increasing values of the Darcy number with uniform or non-uniform heating condition.  相似文献   

15.
Boundary layer approximation is applied for mixed convection about a horizontal flat plate in a saturated porous medium with aiding external flows. Similarity solutions are obtained, incorporating the variation of permeabilty, for 1) horizontal flat plate at zero angle of attack with constant heat flux; 2) stagnation point flows about horizontal flat plates with wall temperature varying asT wx 2. The temperature and velocity profiles for different values of Ra/(RePr)3/2 and the parameters governing the flow are obtained. The heat transfer rate is calculated and its implications in a geothermal application is discussed. Further, the criteria for pure mixed convection about horizontal flat plates in a porous media are established.  相似文献   

16.
The mixed convection heat transfer of upward molten salt flow in a vertical annular duct is experimentally and numerically studied. The heat transfer performances of mixed convection are measured under Reynolds number 2,500–12,000 and inlet temperature 300–400 °C, and Nusselt number of molten salt flow with cooled inner wall monotonically increases with buoyancy number. The mixed convection is further simulated by low-Reynolds number k-ε model and variable properties, and the heat transfer tendency from numerical results agrees with that from experiments. At low Reynolds number, the natural convection plays more important role in the mixed convection. As the buoyancy number rises, the thickness of flow boundary layer near the inner wall increases, while the effective thermal conductivity remarkably rises, so the enhanced heat transfer of mixed convection is mainly affected by the effective thermal conductivity due to turbulent diffusion.  相似文献   

17.
This paper presents a numerical study of the conjugate heat transfer (natural convection, surface thermal radiation and conduction) in a square cavity with turbulent flow. The cavity has one vertical isothermal wall, two horizontal adiabatic walls and one vertical semitransparent wall with a selective coating applied to the inner side to control the solar radiation transmission. Later on the semitransparent wall is replaced with another one without the selective coating. The mathematical model for the turbulent flow in the cavity was solved using the finite volume method. The system had the following conditions: the uniform temperature in the isothermal wall was 21 °C, the external ambient temperature was fixed at 35 °C and on the semitransparent wall the direct normal solar irradiation of 750 W/m2 was considered constant. The Rayleigh number was varied in the range of 109 ? Ra ? 1012 by changing the lengths of the cavity from 0.70 m to 6.98 m, respectively. The results show that, even though the air temperature of the cavity with the solar control film coating semitransparent wall (case A) is higher compared with the one without solar film coating (case B), the total amount of heat going through the cavity is lower compared to the one going through the cavity without solar control film. The total amount of energy transferred to the air in cavity for the case A was 41.98% less than for the case B. A set of correlations for the Nusselt number was obtained for both cases considering the conjugate heat transfer.  相似文献   

18.
In this study, steady-state forced convection heat transfer and pressure drop characteristics for hydrodynamically fully developed thermally developing three-dimensional turbulent flow in a horizontal smooth trapezoidal duct with corner angle of 75° and hydraulic diameter of 0.043 m were both experimentally and numerically investigated in the Reynolds number range from 2.6 × 103 to 67 × 103 for isothermal conditions. Results have shown that there is a good agreement between the present experimental and numerical results.  相似文献   

19.
The effect of double-diffusive natural convection of water in a partially heated enclosure with Soret and Dufour coefficients around the density maximum is studied numerically. The right vertical wall has constant temperature θc, while left vertical wall is partially heated θh, with θh > θc. The concentration in right wall is maintained higher than left wall (Cc < Ch) for case I, and concentration is lower in right wall than left wall (Ch > Cc) for case II. The remaining left vertical wall and the two horizontal walls are considered adiabatic. Water is considered as the working fluid. The governing equations are solved by control volume method using SIMPLE algorithm with QUICK scheme. The effect of the various parameters (thermal Rayleigh number, center of the heating location, density inversion parameter, Buoyancy ratio number, Schmidt number, and Soret and Dufour coefficients) on the flow pattern and heat and mass transfer has been depicted. Comprehensive Nusselt and Sherwood numbers data are presented as functions of the governing parameters mentioned above.  相似文献   

20.
The entropy generation during the transient laminar natural convection in a square enclosure that is partially heated from a vertical lateral wall is numerically investigated. The active sites referring to the main irreversibility locations are determined. The Boussinesq approximation is used in the natural convection modelling. The effects of Prandtl (Pr) and Rayleigh (Ra) number combinations on the entropy generation are investigated. The study is restricted to the fluids of Prandtl number from 0.01 to 1.0, and Rayleigh numbers in the range of 102–108. It is found that the upper corner of the heated part of the side wall is the active site where the entropy generation initiates due to irreversibilities representing the energy loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号