首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barker JE  Liu Y  Yee GT  Chen WZ  Wang G  Rivera VM  Ren T 《Inorganic chemistry》2006,45(19):7973-7980
A novel Cu(II)2 complex of the [18]ane-N6 macrocycle ([18]ane-N6 = 1,4,7,10,13,16-hexaazacyclooctadecane) was prepared from the reaction between [18]ane-N6 and Cu(II) salts such as Cu(NO3)2 and Cu(OAc)2. A structural study of the complex derived from Cu(OAc)2 (1) revealed a Cu(II)2 core encircled by a [18]ane-N6 ligand and two mu-O-OAc ligands. The facile replacement of mu-O-OAc by a phosphate monoester [PO3(OR)2-] yielded a number of bis(phosphate monoester)dicopper complexes with ROPO3(2-) as hydrogen phosphate (HPO4(2-), 3a), phenyl phosphate [PO3(OPh)2-, 3b], glycerol 2-phosphate [PO3(OCH(CH2OH)2)2-, 3c], alpha-d-gluocose phosphate [PO3(C6H11O6)2-, 3d], and dl-alpha-glycerol phosphate [PO3(OCH2CHOHCH2OH)2-, 3e]. Structural studies of compounds 3a-d confirmed both the retention of the Cu2{[18]ane-N6} core and a mu-O-PO3(OR) coordination mode. Displacement of acetate by a phosphate monoester in an aqueous solution was accompanied by a significant change in the visible absorption, which enables the establishment of relative association constants of PO3(OR)2- on the order of 10(4) in the unbuffered solution and 10(3) in the buffered solution (HEPES). Measurement of the magnetic susceptibility of compound 3a over the temperature range of 5-300 K and subsequent modeling revealed a weak antiferromagnetic coupling (J = -1.1 cm(-1)) between two Cu(II) centers.  相似文献   

2.
The dicopper(II) complex [Cu(2)(L)](4+) (L = alpha,alpha'-bis[bis[2-(1'-methyl-2'-benzimidazolyl)ethyl]amino]-m-xylene) reacts with hydrogen peroxide to give the dicopper(II)-hydroquinone complex in which the xylyl ring of the ligand has undergone a double hydroxylation reaction at ring positions 2 and 5. The dihydroxylated ligand 2,6-bis([bis[2-(3-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)benzene-1,4-diol was isolated by decomposition of the product complex. The incorporation of two oxygen atoms from H(2)O(2) into the ligand was confirmed by isotope labeling studies using H(2)(18)O(2). The pathway of the unusual double hydroxylation was investigated by preparing the two isomeric phenolic derivatives of L, namely 3,5-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (6) and 2,6-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (7), carrying the hydroxyl group in one of the two positions where L is hydroxylated. The dicopper(II) complexes prepared with the new ligands 6 and 7 and containing bridging micro-phenoxo moieties are inactive in the hydroxylation. Though, the dicopper(II) complex 3 derived from 6 and containing a protonated phenol is rapidly hydroxylated by H(2)O(2) and represents the first product formed in the hydroxylation of [Cu(2)(L)](4+). Kinetic studies performed on the reactions of [Cu(2)(L)](4+) and 3 with H(2)O(2) show that the second hydroxylation is faster than the first one at room temperature (0.13 +/- 0.05 s(-1) vs 5.0(+/-0.1) x 10(-3) s(-1)) and both are intramolecular processes. However, the two reactions exhibit different activation parameters (Delta H++ = 39.1 +/- 0.9 kJ mol(-1) and Delta S++ = -115.7 +/- 2.4 J K(-1) mol(-1) for the first hydroxylation; Delta H++ = 77.8 +/- 1.6 kJ mol(-1) and Delta S++ = -14.0 +/- 0.4 J K(-1) mol(-1) for the second hydroxylation). By studying the reaction between [Cu(2)(L)](4+) and H(2)O(2) at low temperature, we were able to characterize the intermediate eta(1):eta(1)-hydroperoxodicopper(II) adduct active in the first hydroxylation step, [Cu(2)(L)(OOH)](3+) [lambda(max) = 342 (epsilon 12,000), 444 (epsilon 1200), and 610 nm (epsilon 800 M(-1)cm(-1)); broad EPR signal in frozen solution indicative of magnetically coupled Cu(II) centers].  相似文献   

3.
A new Cd(II) complex [Cd3(L)3(mu3-CO3)](ClO4)4.2CH3CN (1) with two-dimensional (2D) network structure was obtained by reaction of an imidazole-containing tripodal polyamine ligand N1-(2-aminoethyl)-N1-(2-imidazolethyl)-ethane-1,2-diamine (L) with Cd(ClO4)2.6H2O at pH 9.0 in air. The carbonate anions (CO3(2-)) are from the hydration of the atmospheric carbon dioxide, which is the same as in the previously reported Cu(II) complex [Cu3(L)3(mu3-CO3)](ClO4)4.3CH3CN (2). However, the coordination mode of CO3(2-) in 1 is mu3-eta2:eta2:eta2 while the one in 2 is mu3-eta1:eta1:eta1. One-dimensional (1D) chain Cd(II) and Cu(II) complexes [Cd(L)Cl]ClO4.H2O (3) and [Cu(L)(H2O)](ClO4)2 (4) without CO3(2-) were prepared by a similar method as that for 1 and 2 except for the different reaction pH, namely, 3 and 4 were obtained at pH 7 while 1 and 2 were obtained at pH 9. In addition, when Cu(NO3)2 was used to react with L at pH 9, a unique 1D double-stranded helical chain complex [Cu(L)Cl]NO3.1.25H2O (5) was obtained. The results revealed that the reaction pH and the counteranion have great impact on the carbon dioxide absorption and hydration as well as on the assembling and structure of the complexes. The magnetic property of complex 2 was investigated in the temperature range of 1.8-300 K, and weak ferromagnetic coupling among the mu3-eta1:eta1:eta1-CO3(2-) bridged Cu(II) atoms was observed.  相似文献   

4.
Trinuclear Cu (II)-complexes of formula [Cu (II) 3(mu 3-E)(mu-4-R-pz) 3X 3] (+/- n ), E = O and OH; R = H, Cl, Br, CH(O) and NO 2; X = Cl, NCS, CH 3COO, and py, have been synthesized and characterized and the effect of substitution of terminal ligands, as well as 4-R-groups, in the one-electron oxidation process has been investigated by cyclic voltammetry. In situ UV-vis-NIR spectroelectrochemical characterization of the mixed valence Cu 3 (7+)-complex [Cu 3(mu 3-O)(mu-pz) 3Cl 3] (-) revealed an intervalence charge transfer band at 9550 cm (-1) (epsilon = 2600 cm (-1) M (-1)), whose analysis identifies this species as a delocalized, Robin-Day class-III system, with an electronic coupling factor, H ab, of 4775 cm (-1).  相似文献   

5.
在非离子型微乳液(OP/n-C5H11OH/n-C7H16/H2O)存在下,Cu2+与硫氰酸盐形成络阴离子[Cu(SCN)4]2-,在pH 3.6乙酸盐缓冲溶液中,该络阴离子再与乙基紫(EV)形成吸附型离子络合物,该络合物的组成为[Cu(SCN)4]2-:EV=1:2,最大吸收波长为660nm,表观摩尔吸光系数ε660为1.08×l05L.mol-1.cm-1,Cu2+含量在1.7~18.0μg/50 mL范围内符合比尔定律,检出限为0.5μg/50 mL,用该方法测定了钢中的铜,相对标准偏差小于2%。  相似文献   

6.
Coordination complexes of the ligand H3L [1,3-bis(3-oxo-3-phenylpropionyl)-2-hydroxy-5-methylbenzene] with Cu(II) are reported. Clusters showing various nuclearities or modes of supramolecular organization have been prepared by slightly changing the reaction conditions and have been crystallographically characterized. The reaction of H3L with one equivalent of Cu(OAc)2 in DMF yields the dinuclear complex [Cu2(HL)2(dmf)2] (1). Reaction in MeOH of H3L with an increased amount of metal, in the form of Cu(NO3)2, and excess strong base (nBu4NOH) affords the cluster [Cu8(L)2(OMe)8(NO3)2] (2). Complex 2 is a dimer of two linear [Cu4] arrays bridged by methoxide ligands, where the polynucleating ligand is fully deprotonated. The [Cu4]2 clusters are linked to each other by NO3- bridges to form one-dimensional coordination polymers. The link between [Cu8] units and their relative spatial positioning can be modified by changing the anion of the Cu(II) salt, as demonstrated by the synthesis of the cluster polymers [Cu8(L)2(OMe)8Cl2] (3) and [Cu8(L)(OMe)7.86Br2.14] (4), where only NO3- has been replaced by Cl- or Br-, respectively. Similarly, when ClO4- is used, compound [Cu8(L)2(OMe)8(ClO4)2(MeOH)4] (5) can be isolated. It contains independent [Cu8] units. A slight change in the stoichiometry of the reaction leading to 2 affords the related complex catena-[Cu4(L)(OMe)3(NO3)2(H2O)0.36] (6). This polymer contains essentially the same [Cu4] moiety as 2, albeit organized in a completely different arrangement. Each [Cu4] unit in 6 is linked by OMe- ligands to two such equivalent groups to form an infinite chain. Magnetic susceptibility measurements reveal weak antiferromagnetic exchange between Cu(II) centers in 1 (J = -0.73 cm(-1)) and strong antiferromagnetic coupling within [Cu4] chains in 2, 5, and 6 (most negative J values of -113.8 and -177.3 cm(-1) for 2 and 6, respectively).  相似文献   

7.
Hydrothermal reactions of 1,2,4-triazole with the appropriate copper salt have provided eight structurally unique members of the Cu/triazolate/X system, with X = F-, Cl-, Br-, I-, OH-, and SO4(2-). The anionic components X of [Cu3(trz)4(H2O)3]F2 (1) and [Cu6(trz)4Br]Cu4Br4(OH) (4) do not participate in the framework connectivity, acting as isolated charge-compensating counterions. In contrast, the anionic subunits X of [Cu(II)Cu(I)(trz)Cl2] (2), [Cu6(trz)4Br2] (3), [Cu(II)Cu(I)(trz)Br2] (5), [Cu3(trz)I2] (6), [Cu6(II)Cu2(I)(trz)6(SO4)3(OH)2(H2O)] (8), and [Cu4(trz)3]OH.7.5H2O (9.7.5H2O) are intimately involved in the three-dimensional connectivities. The structure of [Cu(II)Cu(I)(trz)2][Cu3(I)I4] (7) is constructed from two independent substructures: a three-dimensional cationic {Cu2(trz)2}n(n+) component and {Cu3I4}n(n-) chains. Curiously, four of the structures are mixed-valence Cu(I)/Cu(II) materials: 2, 5, 7, and 8. The only Cu(II) species is 1, while 3, 4, 6, and 9.7.5H2O exhibit exclusively Cu(I) sites. The magnetic properties of the Cu(II) species 1 and of the mixed-valence materials 5, 7, 8, and the previously reported [Cu3(trz)3OH][Cu2Br4] have been studied. The temperature-dependent magnetic susceptibility of 1 conforms to a simple isotropic model above 13 K, while below this temperature, there is weak ferromagnetic ordering due to spin canting of the antiferromagnetically coupled trimer units. Compounds 5 and 7 exhibit magnetic properties consistent with a one-dimensional chain model. The magnetic data for 8 were fit over the temperature range 2-300 K using the molecular field approximation with J = 204 cm(-1), g = 2.25, and zJ' = -38 cm(-1). The magnetic properties of [Cu3(trz)3OH][Cu2Br4] are similar to those of 8, as anticipated from the presence of similar triangular {Cu3(trz)3(mu3-OH)}(2+) building blocks. The Cu(I) species 3, 4, 6, and 9 as well as the previously reported [Cu(5)(trz)3Cl2] exhibit luminescence thermochromism. The spectra are characterized by broad emissions, long lifetimes, and significant Stokes' shifts, characteristic of phosphorescence.  相似文献   

8.
Zhou YH  Fu H  Zhao WX  Chen WL  Su CY  Sun H  Ji LN  Mao ZW 《Inorganic chemistry》2007,46(3):734-739
Two supramolecular complexes, [Cu(L)(H2O)2(beta-CD)](ClO4)2.10.5H2O.CH3OH (1) and [Cu(L)(H2O)2(beta-GCD)](HClO4)(ClO4)2.10H2O (2) (L = 4-(4'-tert-butyl-benzyl)diethylenetriamine, beta-CD = beta-cyclodextrin, and beta-GCD = mono-6-deoxy-6-guanidinocycloheptaamylose cation), have been synthesized. The structure of 1 has been characterized by X-ray crystallography. The 4-tert-butyl-benzyl of [Cu(L)(H2O)2]2+ moiety in 1 as a guest inserts into the hydrophobic cavity of the beta-CD as a host along the primary hydroxyl side. On the basis of the structure data of 1, complex 2 was modeled, which showed that the distance between the Cu and C atom of the guanidinium is 5.2 A, comparable to the corresponding distance in bovine erythrocyte Cu, Zn-SOD (5.9 A) (SOD = superoxide dismutase). Apparent inclusion stability constants of the host and the guest were measured to be 0.66 (+/-0.01) x 104 and 1.15 (+/-0.03) x 104 M-1 for 1 and 2 respectively. The electronic absorption bands and electronic reflection bands of each complex are almost the same, indicating an identical structure of the complex in aqueous solution and in solid state. The two complexes showed quasi-reversible one-electron Cu(II)/Cu(I) redox waves with redox potentials of -0.345 and -0.338 V for 1 and 2, respectively. Their SOD-like activities (IC50) were measured to be 0.30 +/- 0.01 and 0.17 +/- 0.01 microM by xanthine/xanthine oxidase-NBT assay. The enhanced SOD activity of 2 by approximately 40% compared with 1 suggests that the guanidyl cation in the host of the supramolecular system of 2 can effectively mimic the side chain of Arg141 in the enzyme, which is known to be essential for high SOD activity possibly through steering of the superoxide substrate to and from the active copper ion.  相似文献   

9.
Two tetradentate ligands 1,2-bis[2-((dimethylamino)methyl)-6-pyridyl]ethane (L1) and 1,2-bis[2-(N-piperidinomethyl)-6-pyridyl]ethane (L2) and a hexadentate ligand 1,2-bis(2-((methyl(pyridylmethyl)amino)methyl)-6-pyridyl)ethane (L3) were prepared as part of a series of new polypyridine ligands possessing a 1,2-bis(2-pyridyl)ethane common moiety. L1 and L2 form mononuclear Cu(II) complexes [Cu(L)(Cl)](ClO4) [L = L1 (1) and L2 (2)], respectively. L3 forms a dinuclear Cu(II) complex [Cu2(L3)((PhO)2PO2)2](ClO4)2 (3) or a hexanuclear Cu(II) complex [Cu6(L3)3((PhO)PO3)4](ClO4)4 (4) in the presence of (PhO)2PO2- monoanion or (PhO)PO3(2-) dianion, respectively. The structures of 1-4 were determined by X-ray analysis. The structures in solution were investigated by means of FAB and CSI MS spectrometers. The structural flexibility of the common 1,2-bis(2-pyridyl)ethane moiety and of the pendant groups allows complexes 1-4 to adapt to the various structures. Each Cu ion in 1 and 2 adopts a square pyramidal geometry with one Cl ion and two pendant groups (L1 and L2) binding in a bis-bidentate chelate mode. There is no steric repulsion between the pendant groups, so that the ligands specifically stabilize the mononuclear structures. L3 binds two Cu(II) ions with two pendant groups in tridentate chelate modes and, with the incorporation of phosphate esters, various dinuclear units are formed in 3 and 4. In 4, a dinuclear unit of [Cu2(L3)]4+ links two dinuclear units of [Cu2(L3)(PhOPO3)2] with four (mu3)-1,3-PhOPO3(2-) bridges. The hydrolytic activity of 2 and a dicopper(II) complex of L3 was examined with tris(p-nitrophenyl) phosphate (TNP) as a substrate.  相似文献   

10.
The dioxygen activation of a series of Cu(I)Cu(I)Cu(I) complexes based on the ligands (L) 3,3'-(1,4-diazepane- 1,4-diyl)bis(1-{[2-(dimethylamino)ethyl](methyl)amino}propan-2-ol)(7-Me) or 3,3'-(1,4-diazepane-1,4-diyl)bis(1-{[2-(diethylamino)ethyl](ethyl)amino}propan-2-ol)(7-Et) forms an intermediate capable of mediating facile O-atom transfer to simple organic substrates at room temperature. To elucidate the dioxygen chemistry, we have examined the reactions of 7-Me, 7-Et, and 3,3'-(1,4-diazepane-1,4-diyl)bis[1-(4-methylpiperazin-1-yl)propan-2-ol] (7-N-Meppz) with dioxygen at -80, -55, and -35?°C in propionitrile (EtCN) by UV-visible, 77?K EPR, and X-ray absorption spectroscopy, and 7-N-Meppz and 7-Me with dioxygen at room temperature in acetonitrile (MeCN) by diode array spectrophotometry. At both -80 and -55?°C, the mixing of the starting [Cu(I)Cu(I)Cu(I)(L)](1+) complex (1) with O(2)-saturated propionitrile (EtCN) led to a bright green solution consisting of two paramagnetic species: the green dioxygen adduct [Cu(II)Cu(II)(μ-η(2):η(2)-peroxo)Cu(II)(L)](2+) (2) and the blue [Cu(II)Cu(II)(μ-O)Cu(II)(L)](2+) species (3). These observations are consistent with the initial formation of [Cu(II)Cu(II)(μ-O)(2)Cu(III)(L)](1+)(4), followed by rapid abortion of this highly reactive species by intercluster electron transfer from a second molecule of complex 1 to give the blue species 3 and subsequent oxygenation of the partially oxidized [Cu(II)Cu(I)Cu(I)(L)](2+)(5) to form the green dioxygen adduct 2. Assignment of 2 to [Cu(II)Cu(II)(μ-η(2):η(2)-peroxo)Cu(II)(L)](2+) is consistent with its reactivity with water to give H(2)O(2) and the blue species 3, as well as its propensity to be photoreduced in the X-ray beam during X-ray absorption experiments at room temperature. In light of these observations, the development of an oxidation catalyst based on the tricopper system requires consideration of the following design criteria: 1)?rapid dioxygen chemistry; 2)?facile O-atom transfer from the activated cluster to substrate; and 3)?a suitable reductant to rapidly regenerate complex 1 to accomplish efficient catalytic turnover.  相似文献   

11.
The equilibrium distribution of species formed between Cu(II) and N-acetylneuraminic (sialic) acid (I, LH) at 298 K has been determined using a two-dimensional (2D) simulation analysis of electron paramagnetic resonance (EPR) spectra. In acidic solutions (pH values < 4), the major species present are Cu(2+), [CuL]+ [logbeta = 1.64(4)], and [CuL2] [logbeta = 2.77(5)]. At intermediate pH values (4.0 < pH < 7.5), [CuL2H-1]- [logbeta = -2.72(7)] and two isomers of [CuLH-1] [logbeta (overall) = -3.37(2)] are present. At alkaline pH values (7.5 < pH < 11), the major species present is [CuL2H-2]2-, modeled as three isomers with unique giso and Aiso values [logbeta (overall) = -8.68(3)]. Two further species ([CuLH-3]2- and [CuL2H-3]3-) appear at pH values > 11. It is proposed that [CuL]+ most likely features I coordinated via the deprotonated carboxylic acid group (O1) and the endocyclic oxygen atom (OR) forming a five-membered chelate ring. Select Cu(II)-I species of the form [CuLH-1] may feature I acting as a dianionic tridentate chelate, via oxygen atoms derived from O1, OR, and one deprotonated hydroxy group (O7 or O8) from the glycerol tail. Alternatively, I may coordinate Cu(II) in a bidentate fashion as the tert-2-hydroxycarboxylato (O1,O2) dianion. Spectra predicted for Cu(II)-I complexes in which I is coordinated in either a O1,OR {I1-} or O1,O2 {I2-} bidentate fashion {e.g., [CuL]+ (O1,O R), [CuL2] (bis-O1,O R), [CuLH-1] (isomer: O1, O2), [CuL2H-1]- (O1, O R; O1, O2), and [CuL2H-2]2- (isomer: bis-O1, O2)} have "irregular" EPR spectra that are ascribed to the existence of Cu(II)-I(monomer) <==> Cu(II)-I(polymer) equilibria. The formation of polymeric Cu(II)-I species will be favored in these complexes because the glycerol-derived hydroxyl groups at the complex periphery (O, 7O, 8O9) are available for further Cu(II) binding. The presence of polymeric Cu(II)-I species is supported by EPR spectral data from solutions of Cu(II) and the homopolymer of I, colominic acid (Ipoly). Conversely, spectra predicted for Cu(II)-I complexes where I is coordinated in a {I2-} tridentate {e.g., [CuLH-1] (isomer: O1, O R, O7, or O8) and [CuL2H-2]2- (isomer: bis-O1,O R,O7, or O8)} or tetradentate fashion {I3-} {e.g., [CuLH-3]2- (O1, O R, O, 8O9)} are typical for mononuclear tetragonally elongated Cu(II) octahedra. In this latter series of complexes, the tendency toward the formation of polymeric Cu(II)-I analogues is small because the polydentate I effectively wraps up the mononuclear Cu(II) center. This work shows that Cu(II) could potentially mediate the chemistry of sialoglycoconjugate-containing proteins in human biology, such as the sialylated amyloid precursor protein of relevance to Alzheimer's disease.  相似文献   

12.
Zheng LL  Zhang WX  Qin LJ  Leng JD  Lu JX  Tong ML 《Inorganic chemistry》2007,46(23):9548-9557
A neutral pentadentate ligand, di(pyrazolecarbimido)amine (Hdcadpz), and its adduct with HClO4, [H2dcadpz]+[ClO4]-, were for the first time isolated from our previously reported [Cu3(dcadpz)2(Hpz)2(ClO4)2](ClO4)2.H2O by the use of (NH4)2S to remove the CuII ions and characterized by IR, EA, UV, NMR, MS, and X-ray crystallography. Reactions of copper(II) or nickel(II) nitrate with Hdcadpz in a 1:2 molar ratio generated two mononuclear precursors of [Cu(dcadpz)2] (1) and [Ni(dcadpz)2].2/3DMF (2). Furthermore, three new linear homo- and heterotrinuclear complexes of the same motif [M{M'(dcadpz)2}M] (M=CoII, NiII, M'=CuII, NiII), [{Co(pdm)}2{Cu(dcadpz)2}](NO3)4 (3), [{Ni(pdm)}2{Cu(dcadpz)2}](NO3)4 (4), and [{Ni(MeOH)(H2O)2}2{Ni(dcadpz)2}](NO3)4 (5), were synthesized from these two precursors (pdm=2,6-pyridinedimethanol) and characterized by X-ray crystallography. Magnetic studies show that the central Cu(dcadpz)2 motif is antiferromagnetically coupled with both the terminal Co(II) atoms via the dcadpz- ligand in 3 with a J value of -5.27 cm(-1) and ferromagnetically coupled with both the terminal Ni(II) atoms in 4 with a J value of 2.50 cm(-1), while 5 behaves only as a Curie paramagnet between 2 and 300 K due to the diamagnetic character of the central square-planar Ni(II) atom.  相似文献   

13.
Two myo-inositol derivatives (4) and (5), required for the total synthesis of surugatoxin, prosurugatoxin, and neosurugatoxin, were prepared. Synthesis of (+/-)-2,3-O-cyclohexylidene-4,5-O-isopropylidene-1-O-methoxymethyl-myo-i nositol (4) was achieved from (+/-)-1-O-benzoyl-2,3-O-cyclohexylidene-4,5-O-isopropylidene-myo-inosito l (6) in 4 steps, and (-)-2,3-O-cyclohexylidene-1,4-di-O-methoxymethyl-5-O-[2',3',4'-tri-O-ace tyl- beta-D-xylopyranosyl]-myo-inositol (5) was synthesized from (+/-)-1-O-benzoyl-2,3-O-cyclohexylidene-5,6-O-isopropylidene-myo-inosito l (12) in 7 steps.  相似文献   

14.
The kinetics of Cu(II) reduction by Suwannee River fulvic acid (SRFA) at concentrations from 0.25 to 8 mg L(-1) have been investigated in 2 mM NaHCO(3) and 0.7 M NaCl at pH 8.0. In the absence of oxygen, SRFA reduced Cu(II) to Cu(I) in a biphasic manner, with initial rapid formation of Cu(I) followed by a much slower increase in Cu(I) concentration over time. When present, oxygen only had a noticeable effect on Cu(I) concentrations in the second phase of the reduction process and at high [SRFA]. In both the absence and presence of oxygen, the rate of Cu(I) generation increased with increasing [SRFA]. At 8 mg L(-1) [SRFA], nearly 75% of the 0.4 μM Cu(II) initially present was reduced to Cu(I) after 20 min, although the yield of Cu(I) relative to [SRFA] decreased at [SRFA] > 1 mg L(-1). Two plausible kinetic modeling approaches were found to satisfactorily describe the experimental data over a range of [SRFA]. Despite some uncertainty as to which approach is correct, common features of both approaches were complexation of Cu(II) by SRFA and reduction of Cu(II) by two different electron donor groups within SRFA: a relatively labile electron donor (with a concentration of 1.1 × 10(-4) equiv of e(-) (g of SRFA)(-1)) that reduced Cu(II) relatively rapidly and a less labile donor (with a concentration of 3.1 × 10(-4) equiv of e(-) (g of SRFA)(-1)) that reduced Cu(II) more slowly.  相似文献   

15.
Amberlite XAD-2 has been functionalized by coupling it to quinalizarin [1,2,5,8-tetrahydroxyanthraquinone] by means of an -N = N- spacer. Elemental analysis, thermogravimetric analysis, and infrared spectra were used to characterize the resulting new polymer matrix. The matrix has been used to preconcentrate Cu(II), Cd(II), Co(II), Pb(II), Zn(II), and Mn(II) before their determination by flame atomic absorption spectrometry (FAAS). UO2(II) has been preconcentrated for fluorimetric determination. The optimum pH values for maximum adsorption of the metals are between 5.0 and 7.0. All these metal ions are desorbed (recovery 91-99%) with 4 mol L(-1) HNO3. The adsorptive capacity of the resin was found to be in the range 0.94-5.28 mg metal g(-1) resin and loading half-life (t1/2) between 5.3 and 15.0 min. The effects of NaF, NaCl, NaNO3, Na2SO4, Na3PO4, Ca(II), and Mg(II) on the adsorption of these metal ions (0.2 microg mL(-1)) are reported. The lower limits of detection for these metal ions are between 1 and 15.0 microg L(-1). After enrichment on this matrix flame AAS has been used to determine these metal ions (except the uranyl ion) in river water samples (RSD < or = 6.5%); fluorimetry was used to determine uranyl ion in well water samples (RSD < or = 6.3%). Cobalt from pharmaceutical vitamin tablets was preconcentrated by use of this chelating resin and estimated by FAAS (RSD approximately 4%).  相似文献   

16.
A new polyimidazole tripod N,N-bis((1-methyl-4-pivalamidoimidazol-2-yl)methyl)-N'-((1-methylimidazol-2-yl)methyl)amine (L2) has been synthesized and shown to form intramolecular hydrogen bonds with different axial ligands bonded to Cu(II) in the solid state. The same hydrogen-bonding property of L2 appears responsible for the stabilization of a Cu(II)-OOH species in solution. The crystal structures of L2 and three of its Cu(II) complexes are reported. The [Cu(L2)X]ClO4 complexes, 4-6 (X- = Cl-, OH-, or N3-) have distorted trigonal bipyramidal geometries in the solid state and have been characterized further by UV-vis absorption, electron paramagnetic resonance (EPR) spectroscopy, and cyclic voltammetry. The reaction of [Cu(L2)OH](ClO4) (5) with H2O2 and tert-butyl hydroperoxide in methanol generates [Cu(L2)OOH](ClO4) (7) and [Cu(L2)OO(t)Bu](ClO4) (8) which have been characterized by different spectroscopic methods. The compound [Cu(L2)OO(t)Bu]+ displays a band at 395 nm (epsilon = 950 M(-1) cm(-1)) assigned to an alkylperoxo pi*(sigma) --> Cu ligand-to-metal charge transfer (LMCT) transition, while [Cu(L2)OOH]+ displays a peroxo pi*(sigma) --> Cu charge-transfer transition at 365 nm with epsilon = 1300 M(-1) cm(-1), a mass ion at m/z 593.4, and nu(O-O) stretch (resonance Raman) at 854 cm(-1) that shifts to lower energy by 46 cm(-1) upon 18O substitution.  相似文献   

17.
A copper(I) compound [(L2)Cu(MeCN)2][ClO4] (1) containing a new bidentate N-donor ligand L2, 1-benzyl-[3-(2'-pyridyl)]pyrazole, derived from the condensation of HL1 [HL1 = 3-(2-pyridyl)pyrazole] and benzyl chloride, has been synthesized. Structural analysis reveals that in the copper(I) centre is coordinated by a pyridine and a pyrazole nitrogen from L2 and two MeCN molecules, providing a distorted tetrahedral geometry. Reaction of with dioxygen in N,N'-dimethylformamide (dmf) at 25 degrees C and subsequent workup with MeCO2Et afforded an acetato-/pyrazolato-bridged polymeric copper(II) compound [(mu-L1)Cu(mu-O2CMe)]n (2). Notably, the deprotonated form of HL(1) and MeCO2- have originated from debenzylation of L2 and hydrolysis of MeCO2Et, respectively. The structural analysis of reveals a near-planar {Cu2(mu-L1)2}2+ core unit in which two adjacent Cu(II) ions are bridged by the deprotonated N,N-bidentate pyridylpyrazole units of two L1 and each such {Cu2(mu-L1)2}2+ unit is bridged by MeCO2- in a monodentate bridging mode [Cu...Cu separations (A): 3.9232(4) pyrazolate bridge; 3.3418(4) acetate bridge], providing a polymeric network. Careful oxygenation of in MeCN led to the isolation of a dihydroxo-bridged dicopper(II) compound [{(L2)Cu(mu-OH)(OClO3)}2] (3). Interestingly, complex brings about hydrolysis of MeCO2Et under mild conditions (dmf, ca. 60 degrees C), generating a bis-mu-1,3-acetato-bridged dicopper(II) complex, [{(L2)Cu(dmf)(mu-O2CMe)}2][ClO4]2.dmf.0.5MeCO2H (4). Compounds and have {Cu2(mu-OH)2}2+ [Cu...Cu separation of 2.8474(9) A] and {Cu2(mu-O2CMe)2}2+ cores [Cu...Cu separation: 3.0988(26) and 3.0792(29) A (two independent molecules in the asymmetric unit)] in which each Cu(II) centre is terminally coordinated by L2. A rationale has been provided for the observed debenzylation of L2 and hydrolysis of MeCO(2)Et. The intramolecular magnetic coupling between the Cu(II) (S = 1/2) ions was found to be ferromagnetic (2J = 82 cm(-1)) in the case of , but antiferromagnetic for (2J = -158 cm(-1)) and (2J = -96 cm(-1)). Absorption and EPR spectroscopic properties of the copper(II) compounds have also been investigated.  相似文献   

18.
19.
Wei Q  Du B 《Talanta》1998,45(5):957-961
A new method for the spectrophotometric determination of nickel naphthenate in gasoline in a microemulsion was developed. PAN reacts with nickel(II) forming a red complex with composition 1:2 (metal to ligand) nickel(II)-PAN and absorption maximum at 568 nm. Nickel naphthenate in gasoline can be determined with PAN in a microemulsion, in the pH range 3.0 approximately 10.0 with a molar absorptivity of 4.8x10(4) l mol(-1) cm(-1). Beer's law was obeyed up to 0.8 mg l(-1) of nickel(II) in the microemulsion system. The interference of Cu(2+), Fe(3+), Mn(2+), Pb(2+) and Zn(2+) can be eliminated by adding 0.5 ml of a mixed masking agent. The method is rapid, simple and highly selective.  相似文献   

20.
meso-Tetrakis(p-tolyl)porphyrinatoruthenium(II) carbonyl, [Ru(II)(TTP)(CO)], can effect intermolecular sulfonium and ammonium ylide formation by catalytic decomposition of diazo compounds such as ethyl diazoacetate (EDA) in the presence of allyl sulfides and amines. Exclusive formation of [2,3]-sigmatropic rearrangement products (70-80% yields) was observed without [1,2]-rearrangement products being detected. The Ru-catalyzed reaction of EDA with disubstituted allyl sulfides such as crotyl sulfide produced an equimolar mixture of anti- and syn-2-(ethylthio)-3-methyl-4-pentenoic acid ethyl ester. The analogous "EDA + N,N-dimethylcrotylamine" reaction afforded a mixture of anti- and syn-2-(N,N-dimethylamino)-3-methyl-4-pentenoic acid ethyl esters with a diastereoselectivity of 3:1. The observed catalytic activity of [Ru(II)(TTP)(CO)] for the ylide [2,3]-sigmatropic rearrangement is comparable to the reported examples involving [Rh(2)(CH(3)CO(2))(4)] and [Cu(acac)(2)] as catalyst. Similarly, cyclic sulfonium and ammonium ylides can be produced by intramolecular reaction of a diazo group tethered to allyl sulfides and amines under the [Ru(II)(TTP)(CO)]-catalyzed reaction conditions. The subsequent [2,3]-sigmatropic rearrangement of the cyclic ylides furnished 2-allyl-substituted sulfur and nitrogen heterocycles in good yields (>90%). By employing [Ru(II)(TTP)(CO)] as catalyst, the cyclic ammonium ylide [2,3]-sigmatropic rearrangement reaction was successfully applied for the total synthesis of (+/-)-platynecine starting from cis-2-butenediol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号